
virgo64-linux-github-code
Documentation

Release latest

Aug 16, 2023

CONTENTS

1 888. CPU pooling or cloud ability in a system call: 3

2 Experimental Prototype 5

3 VIRGO - loadbalancer to get the host:ip of the least loaded node 7

4 889. Loadbalancer option 1 - Centralized loadbalancer registry that tracks load: 9

5 890. Loadbalancer option 2 - Linux Psuedorandom number generator based load bal-
ancer(experimental) instead of centralized registry that tracks load: 11
5.1 891. Implemented VIRGO Linux components (as on 7 March 2016) 11
5.2 VIRGO Features (list is quite dynamic and might be rewritten depending on feasibility - longterm with

no deadline) . 12

6 895.1 Schematic Diagram: 15

7 based on if-else clause of the kernel_analytics variable i.e remote_client invokes virgo_clone() with func-
tion argument “lights on” which is routed to another cloud node. The recipient cloud node “learns” from
AsFer kernel_analytics that Voltage is low or Battery is low from logs and decides to switch in high beam
or low beam. 17

8 Example scenario 898.2 without implementation: 19
8.1 CODE COMMIT RELATED NOTES . 23

9 927. VIRGO code commits as on 16/05/2013 25

10 928. VIRGO code commits as on 20/05/2013 27

11 929. VIRGO code commits as on 6/6/2013 29

12 930. VIRGO code commits as on 25/6/2013 31

13 931. VIRGO code commits as on 1/7/2013 33

14 932. commit as on 03/07/2013 35

15 933. commit as on 10/07/2013 37

16 934. commits as on 12/07/2013 39

17 935. commits as on 16/07/2013 41

18 936. commits as on 17/07/2013 43

i

19 937. commits as on 23/07/2013 45

20 938. commits as on 24/07/2013 47

21 939. commits as on 29/07/2013 49

22 940. commits as on 30/07/2013 51

23 941. commits as on 01/08/2013 and 02/08/2013 53

24 942. commits as on 05/08/2013: 55

25 943. 11 August 2013: 57

26 944. commits as on 23 August 2013 59

27 945. commits as on 1 September 2013 61

28 946. commits as on 14 September 2013 63

29 949. Commits as on 17 September 2013 65

30 950. Commits as on 19 September 2013 67

31 951. Commits as on 23 September 2013 69

32 952. Commits as on 24 September 2013 71

33 953. Commits as on 25 September 2013 73

34 954. Commits as on 26 September 2013 75

35 955. Commits as on 27 September 2013 77

36 956. Commits as on 30 September 2013 79

37 957. Commits as on 1 October 2013 81

38 958. Commits as on 7 October 2013 83

39 959. Commits as on 9 October 2013 and 10 October 2013 85

40 960. Commits as on 11 October 2013 87

41 961. Commits as on 14 October 2013 and 15 October 2013 89

42 962. Commits as on 18 October 2013 91

43 963. Commits as on 21 October 2013 93

44 964. Commits as on 24 October 2013 95

45 965. Commits as on 25 October 2013 97

46 966. Commits as on 29 October 2013 99

47 967. Commits as on 2 November 2013 101

48 968. Commits as on 6 November 2013 103

ii

49 969. Commits as on 7 November 2013 105

50 970. Commits as on 11 November 2013 107

51 971. Commits as on 22 November 2013 109

52 972. Commits as on 2 December 2013 111

53 973. Commits as on 5 December 2013 113

54 974. Commits as on 12 March 2014 115

55 975. Commits as on 20 March 2014 117

56 976. Commits as on 30 March 2014 119

57 977. Commits as on 6 April 2014 121

58 978. Commits as on 7 April 2014 123

59 979. Commits as on 25 April 2014 125

60 980. Commits as on 5 May 2014 127

61 981. Commits as on 7 May 2014 129

62 982. Commits as on 8 May 2014 131

63 983. Commits as on 6 June 2014 133

64 984. Commits as on 3 July 2014 135

65 985. 7 July 2014 - virgo_write() kernel panic notes: 137

66 986. Commits as on 29 July 2014 139

67 987. (FEATURE - DONE) VIRGO Kernel Modules and System Calls major rewrite for 3.15.5 kernel -
17 August 2014 141

68 Initial code commits for VIRGO EventNet kernel module service: 143

69 VIRGO Linux Kernel 4.1.5 port - related code changes - some important notes: 147

70 VIRGO Linux Kernel 4.1.5 - memory system calls: 149

71 VIRGO Linux Kernel 4.1.5 - filesystem calls- testcases and logs: 151

72 VIRGO Linux Kernel 4.1.5 filesystem syscalls: 153

73 VIRGO Linux 4.1.5 kernel memory syscalls: 155

74 VIRGO Linux Kernel 4.1.5 - Memory System Calls: 157

75 1016. (FEATURE - DONE) Python-C++-VIRGOKernel and Python-C-VIRGOKernel boost::python
and cpython implementations: 159

76 1017. Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue -> KingCobra161

77 1022. (FEATURE-DONE) Socket Buffer Debug Utility Function - uses linux skbuff facility 163

iii

iv

virgo64-linux-github-code Documentation, Release latest

/***
#——————————————————————————————————- #NEURONRAIN VIRGO -
Cloud, Machine Learning and Queue augmented Linux Kernel Fork-off #This program is free software: you can
redistribute it and/or modify #it under the terms of the GNU General Public License as published by #the Free Software
Foundation, either version 3 of the License, or #(at your option) any later version. #This program is distributed in
the hope that it will be useful, #but WITHOUT ANY WARRANTY; without even the implied warranty of #MER-
CHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #GNU General Public License for more de-
tails. #You should have received a copy of the GNU General Public License #along with this program. If not, see <http:
//www.gnu.org/licenses/>. #——————————————————————————————————–
#K.Srinivasan #NeuronRain Documentation and Licensing: http://neuronrain-documentation.
readthedocs.io/en/latest/ #Personal website(research): https://sites.google.com/site/
kuja27/ #——————————————————————————————————–
***/

885. VIRGO is an operating system kernel forked off from Linux kernel mainline to add cloud functionalities (system
calls, modules etc.,) within kernel itself with machine learning, analytics, debugging, queueing support in the
deepest layer of OSI stack i.e AsFer, USBmd, KingCobra together with VIRGO constitute the previous function-
alities. Presently there seems to be no cloud implementation with fine-grained cloud primitives (system calls,
modules etc.,) included in kernel itself though there are coarse grained clustering and SunRPC implementations
available. VIRGO complements other Clustering and application layer cloud OSes like cloudstack, openstack
etc., in these aspects - CloudStack and OpenStack can be deployed on a VIRGO Linux Kernel Cloud - OpenStack
nova compute, neutron network, cinder/swift storage subsystems can be augmented to have additional drivers that
invoke lowlevel VIRGO syscall and kernel module primitives (assuming there are no coincidental replications
of functionalities) thereby acting as a foundation to application layer cloud.

886. Remote Device Invocation , which is an old terminlogy for Internet-Of-Things has already been experimented
in SunRPC and KOrbit CORBA-in-linux-kernel kernel modules in old linux kernels (http://www.csn.ul.ie/
~mark/fyp/fypfinal.html - with Solaris MC and example Remote Device Client-Server Module implementa-
tion). VIRGO Linux with the larger encompassing NeuronRain suite is an effort to provide a unified end-to-end
application-to-kernel machine-learning propelled cloud and internet-of-things framework.

Memory pooling is proposed to be implemented by a new virgo_malloc() system call that transparently allocates a
block of virtual memory from memory pooled from virtual memory scattered across individual machines part of the
cloud.

CONTENTS 1

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/
http://neuronrain-documentation.readthedocs.io/en/latest/
http://neuronrain-documentation.readthedocs.io/en/latest/
https://sites.google.com/site/kuja27/
https://sites.google.com/site/kuja27/
http://www.csn.ul.ie/~mark/fyp/fypfinal.html
http://www.csn.ul.ie/~mark/fyp/fypfinal.html

virgo64-linux-github-code Documentation, Release latest

2 CONTENTS

CHAPTER

ONE

888. CPU POOLING OR CLOUD ABILITY IN A SYSTEM CALL:

Clone() system call is linux specific and internally it invokes sys_clone(). All fork(),vfork() and clone() system calls
internally invoke do_fork(). A new system call virgo_clone() is proposed to create a thread transparently on any of the
available machines on the cloud.This creates a thread on a free or least-loaded machine on the cloud and returns the
results.

virgo_clone() is a wrapper over clone() that looks up a map of machines-to-loadfactor and get the host with least load
and invokes clone() on a function on that gets executed on the host. Usual cloud implementations provide userspace
API that have something similar to this - call(function,host). Loadfactor can be calculated through any of the prominent
loadbalancing algorithm. Any example userspace code that uses clone() can be replaced with virgo_clone() and all such
threads will be running in a cloud transparently.Presently Native POSIX threads library(NPTL) and older LinuxThreads
thread libraries internally use clone().

Kernel has support for kernel space sockets with kernel_accept(), kernel_bind(), kernel_connect(), kernel_sendmsg()
and kernel_recvmsg() that can be used inside a kernel module. Virgo driver implements virgo_clone() system call that
does a kernel_connect() to a remote kernel socket already __sock_create()-d, kernel_bind()-ed and kernel_accept()-ed
and does kernel_sendmsg() of the function details and kernel_recvmsg() after function has been executed by clone()
in remote machine. After kernel_accept() receives a connection it reads the function and parameter details. Using
these kthread_create() is executed in the remote machine and results are written back to the originating machine. This
is somewhat similar to SunRPC but adapted and made lightweight to suit virgo_clone() implementation without any
external data representation.

3

virgo64-linux-github-code Documentation, Release latest

4 Chapter 1. 888. CPU pooling or cloud ability in a system call:

CHAPTER

TWO

EXPERIMENTAL PROTOTYPE

virgo_clone() system call and a kernel module virgocloudexec which implements Sun RPC interface have been imple-
mented.

5

virgo64-linux-github-code Documentation, Release latest

6 Chapter 2. Experimental Prototype

CHAPTER

THREE

VIRGO - LOADBALANCER TO GET THE HOST:IP OF THE LEAST
LOADED NODE

7

virgo64-linux-github-code Documentation, Release latest

8 Chapter 3. VIRGO - loadbalancer to get the host:ip of the least loaded node

CHAPTER

FOUR

889. LOADBALANCER OPTION 1 - CENTRALIZED LOADBALANCER
REGISTRY THAT TRACKS LOAD:

Virgo_clone() system call needs to lookup a registry or map of host-to-load and get the least loaded host:ip from it.
This requires a load monitoring code to run periodically and update the map. If this registry is located on a single
machine then simultaneous virgo_clone() calls from many machines on the cloud could choke the registry. Due to
this, loadbalancer registry needs to run on a high-end machine. Alternatively,each machine can have its own view of
the load and multiple copies of load-to-host registries can be stored in individual machines. Synchronization of the
copies becomes a separate task in itself(Cache coherency). Either way gives a tradeoff between accuracy, latency and
efficiency.

Many application level userspace load monitoring tools are available but as virgo_clone() is in kernel space, it needs
to be investigated if kernel-to-kernel loadmonitoring can be done without userspace data transport.Most Cloud API
explicitly invoke a function on a host. If this functionality is needed, virgo_clone() needs to take host:ip address as
extra argument,but it reduces transparent execution.

(Design notes for LB option 1 handwritten by myself are at :http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/
trunk/virgo-docs/MiscellaneousOpenSourceDesignAndAcademicResearchNotes.pdf)

9

http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/MiscellaneousOpenSourceDesignAndAcademicResearchNotes.pdf
http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/MiscellaneousOpenSourceDesignAndAcademicResearchNotes.pdf

virgo64-linux-github-code Documentation, Release latest

10 Chapter 4. 889. Loadbalancer option 1 - Centralized loadbalancer registry that tracks load:

CHAPTER

FIVE

890. LOADBALANCER OPTION 2 - LINUX PSUEDORANDOM
NUMBER GENERATOR BASED LOAD BALANCER(EXPERIMENTAL)

INSTEAD OF CENTRALIZED REGISTRY THAT TRACKS LOAD:

Each virgo_clone() client has a PRG which is queried (/dev/random or /dev/urandom) to get the id of the host to send
the next virgo_clone() function to be executed Expected number of requests per node is derived as:

expected number of requests per node = summation(each_value_for_the_random_variable_for_number_of_requests *
probability_for_each_value) where random variable ranges from 1 to k where N is number of processors and k is the
number of requests to be distributed on N nodes

=expected number of requests per node = (math.pow(N, k+2) - k*math.pow(N,2) + k*math.pow(N,1) - 1) /
(math.pow(N, k+3) - 2*math.pow(N,k+2) + math.pow(N,k+1))

This loadbalancer is dependent on efficacy of the PRG and since each request is uniformly, identically, independently
distributed use of PRG would distribute requests evenly. This obviates the need for loadtracking and coherency of the
load-to-host table.

(Design notes for LB option 2 handwritten by myself at :http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/
virgo-docs/MiscellaneousOpenSourceDesignAndAcademicResearchNotes.pdf)

(python script in virgo-python-src/)

5.1 891. Implemented VIRGO Linux components (as on 7 March 2016)

1. cpupooling virtualization - VIRGO_clone() system call and VIRGO cpupooling driver by which a remote pro-
cedure can be invoked in kernelspace.(port: 10000)

2. memorypooling virtualization - VIRGO_malloc(), VIRGO_get(), VIRGO_set(), VIRGO_free() system calls and
VIRGO memorypooling driver by which kernel memory can be allocated in remote node, written to, read and
freed - A kernelspace memcache-ing.(port: 30000)

3. filesystem virtualization - VIRGO_open(), VIRGO_read(), VIRGO_write(), VIRGO_close() system calls and
VIRGO cloud filesystem driver by which file IO in remote node can be done in kernelspace.(port: 50000)

4. config - VIRGO config driver for configuration symbols export.

5. queueing - VIRGO Queuing driver kernel service for queuing incoming requests, handle them with workqueue
and invoke KingCobra service routines in kernelspace. (port: 60000)

6. cloudsync - kernel module for synchronization primitives (Bakery algorithm etc.,) with exported symbols that
can be used in other VIRGO cloud modules for critical section lock() and unlock()

7. utils - utility driver that exports miscellaneous kernel functions that can be used across VIRGO Linux kernel

11

http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/MiscellaneousOpenSourceDesignAndAcademicResearchNotes.pdf
http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/MiscellaneousOpenSourceDesignAndAcademicResearchNotes.pdf

virgo64-linux-github-code Documentation, Release latest

8. EventNet - eventnet kernel driver to vfs_read()/vfs_write() text files for EventNet vertex and edge messages (port:
20000)

9. Kernel_Analytics - kernel module that reads machine-learnt config key-value pairs set in
/etc/virgo_kernel_analytics.conf. Any machine learning software can be used to get the key-value pairs
for the config. This merges three facets - Machine Learning, Cloud Modules in VIRGO Linux-KingCobra-
USBmd , Mainline Linux Kernel

10. Testcases and kern.log testlogs for the above

11. SATURN program analysis wrapper driver.

Thus VIRGO Linux at present implements a minimum cloud OS (with cloud-wide cpu, memory and file system man-
agement) over Linux and potentially fills in a gap to integrate both software and hardware into cloud with machine
learning and analytics abilities that is absent in application layer cloud implementations. Thus VIRGO cloud is an
IoT operating system kernel too that enables any hardware to be remote controlled. Data analytics using AsFer can
be done by just invoking requisite code from a kernelspace driver above and creating an updated driver binary (or) by
kernel_analytics module which reads the userland machine-learnt config.

5.2 VIRGO Features (list is quite dynamic and might be rewritten de-
pending on feasibility - longterm with no deadline)

892. (FEATURE - DONE-minimum separate config file support in client and kernel service)1. More Sophisticated
VIRGO config file and read_virgo_config() has to be invoked on syscall clients virgo_clone and virgo_malloc
also. Earlier config was being read by kernel module only which would work only on a single machine. A
separate config module kernel service has been added for future use while exporting kernel-wide configuration
related symbols. VIRGO config files have been split into /etc/virgo_client.conf and /etc/virgo_cloud.conf to
delink the cloud client and kernel service config parameters reading and to do away with oft occurring symbol
lookup errors and multiple definition errors for num_cloud_nodes and node_ip_addrs_in_cloud - these errors
are frequent in 3.15.5 kernel than 3.7.8 kernel. Each VIRGO module and system call now reads the config
file independent of others - there is a read_virgo_config_<module>_<client_or_service>() function variant for
each driver and system call. Though at present smacks of a replicated code, in future the config reads for each
component (system call or module) might vary significantly depending on necessities. New kernel module config
has been added in drivers/virgo. This is for future prospective use as a config export driver that can be looked
up by any other VIRGO module for config parameters. include/linux/virgo_config.h has the declarations for all
the config variables declared within each of the VIRGO kernel modules. Config variables in each driver and
system call have been named with prefix and suffix to differentiate the module and/or system call it serves. In
geographically distributed cloud virgo_client.conf has to be in client nodes and virgo_cloud.conf has to be in
cloud nodes. For VIRGO Queue - KingCobra REQUEST-REPLY peer-to-peer messaging system same node
can have virgo_client.conf and virgo_cloud.conf. Above segregation largely simplifies the build process as each
module and system call is independently built without need for a symbol to be exported from other module by
pre-loading it.(- from commit comments done few months ago)

893. (FEATURE - Special case implementation DONE) 2. Object Marshalling and Unmarshalling (Serialization)
Features - Feature 4 is a marshalling feature too as Python world PyObjects are serialized into VIRGO linux
kernel and unmarshalled back bottom-up with CPython and Boost::Python C++ invocations - CPython and Boost
internally take care of serialization.

894. (FEATURE - DONE) Virgo_malloc(), virgo_set(), virgo_get() and virgo_free() syscalls that virtualize the physi-
cal memory across all cloud nodes into a single logical memory behemoth (NUMA visavis UMA). (There are random
crashes in copy_to_user and copy_from_user in syscall path for VIRGO memory pooling commands that were in-
vestigated but turned out to be mystery). These crashes have either been resolved or occur less in 3.15.5 and 4.1.5
kernels. Initial Design Handwritten notes committed at: http://sourceforge.net/p/virgo-linux/code-0/210/tree/trunk/
virgo-docs/VIRGO_Memory_Pooling_virgomalloc_initial_design_notes.pdf

12 Chapter 5. 890. Loadbalancer option 2 - Linux Psuedorandom number generator based load
balancer(experimental) instead of centralized registry that tracks load:

http://sourceforge.net/p/virgo-linux/code-0/210/tree/trunk/virgo-docs/VIRGO_Memory_Pooling_virgomalloc_initial_design_notes.pdf
http://sourceforge.net/p/virgo-linux/code-0/210/tree/trunk/virgo-docs/VIRGO_Memory_Pooling_virgomalloc_initial_design_notes.pdf

virgo64-linux-github-code Documentation, Release latest

895. (FEATURE - DONE) Integrated testing of AsFer-VIRGO Linux Kernel request roundtrip - invocation of VIRGO
linux kernel system calls from AsFer Python via C++ or C extensions - Commits for this have been done on 29
January 2016. This unifies userlevel applications and kernelspace modules so that AsFer Python makes VIRGO
linux kernel an extension. Following is schematic diagram and More details in commit notes below.

5.2. VIRGO Features (list is quite dynamic and might be rewritten depending on feasibility -
longterm with no deadline)

13

virgo64-linux-github-code Documentation, Release latest

14 Chapter 5. 890. Loadbalancer option 2 - Linux Psuedorandom number generator based load
balancer(experimental) instead of centralized registry that tracks load:

CHAPTER

SIX

895.1 SCHEMATIC DIAGRAM:

AsFer Python —–> Boost::Python C++ Extension ——> VIRGO memory system calls ——–> VIRGO
Linux Kernel Memory Drivers / V

|

———————————————<————————————————–

AsFer Python —–> CPython Extensions ——> VIRGO memory system calls ——–> VIRGO
Linux Kernel Memory Drivers

/ V | | ———————————————<————————————————–

896. (FEATURE - DONE) Multithreading of VIRGO cloudexec kernel module (if not already done by kernel module
subsystem internally)

897. (FEATURE - DONE) Sophisticated queuing and persistence of CPU and Memory pooling requests in Kernel
Side (by possibly improving already existing kernel workqueues). Either open source implementations like Ze-
roMQ/ActiveMQ can be used or Queuing implementation has to be written from scratch or both. ActiveMQ
supports REST APIs and is JMS implementation. This feature has been marked completed because recently
NeuronRain AsFer backend has been updated to support KingCobra REQUEST_REPLY.queue as a datasource
for Streaming Abstract Generator. By enabling use_as_kingcobra_service=1 in cpupooling and memorypooling
VIRGO drivers, any incoming CPU and Memory related request can be routed to KingCobra by linux workqueue
in VIRGO queue and disk persisted (/var/log/REQUEST_REPLY.queue) by KingCobra servicerequest recipient.
Also Kafka Publisher/Subscriber have been implemented in NeuronRain AsFer which invoke Streaming Abstract
Generator with KingCobra REQUEST_REPLY.queue as datasource to publish persisted already received CPU
and Memory requests to Kafka Message Queue. Thus queuing and persistence for VIRGO CPU and Memory
is in place. ZeroMQ does not have persistence and is used for NeuronRain client side Router-Dealer concurrent
request servicing pattern.

898. (FEATURE - DONE-Minimum Functionality - this section is an extended draft on respective topics in
NeuronRain AstroInfer design - https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/
AstroInferDesign.txt) Integration of Asfer(AstroInfer) algorithm codes into VIRGO which would add machine
learning capabilities into VIRGO - That is, VIRGO cloud subsystem which is part of a linux kernel installa-
tion “learns” and “adapts” to the processes that are executed on VIRGO. This catapults the power of the Ker-
nel and Operating System into an artificially (rather approximately naturally) intelligent computing platform
(a software “brain”). For example VIRGO can “learn” about “execution times” of processes and suitably act
for future processes. PAC Learning of functions could be theoretical basis for this. Initial commits for Ker-
nel Analytics Module which reads the /etc/virgo_kernel_analytics.conf config have been done. This config file
virgo_kernel_analytics.conf having csv(s) of key-value pairs of analytics variables is set by AsFer or any other
Machine Learning code. With this VIRGO Linux Kernel is endowed with abilities to dynamically evolve than
being just a platform for user code. Implications are huge - for example, a config variable “MaxNetworkBand-
width=255” set by the ML miner in userspace based on a Perceptron or Logistic Regression executed on network
logs can be read by a kernel module that limits the network traffic to 255Mbps. Thus kernel is no longer a static
predictable blob behemoth. With this, VIRGO is an Internet-of-Things kernel that does analytics and based on
analytics variable values integrated hardware can be controlled across the cloud through remote kernel module

15

https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt

virgo64-linux-github-code Documentation, Release latest

function invocation. This facility has been made dynamic with Boost::Python C++ and CPython extensions that
permit flow of objects from machine learnt AsFer kernel analytics variables to VIRGO Linux Kernel memory
drivers via VIRGO system calls directly and back - Commits on 29 January 2016 - this should obviate re-reading
/etc/virgo_kernel_analytics.conf and is an exemplary implementation which unifies C++/Python into C/Kernel.

• Philips Hue IoT mobile app controlled bulb - http://www2.meethue.com/en-xx/

• kernel_analytics module learns key-value pairs from the AsFer code and exports it VIRGO kernel wide

• A driver function with in bulb embedded device driver can be invoked through VIRGO cpupooling (invoked
from remote virgo_clone() system_call)

16 Chapter 6. 895.1 Schematic Diagram:

http://www2.meethue.com/en-xx/

CHAPTER

SEVEN

BASED ON IF-ELSE CLAUSE OF THE KERNEL_ANALYTICS
VARIABLE I.E REMOTE_CLIENT INVOKES VIRGO_CLONE() WITH

FUNCTION ARGUMENT “LIGHTS ON” WHICH IS ROUTED TO
ANOTHER CLOUD NODE. THE RECIPIENT CLOUD NODE “LEARNS”

FROM ASFER KERNEL_ANALYTICS THAT VOLTAGE IS LOW OR
BATTERY IS LOW FROM LOGS AND DECIDES TO SWITCH IN HIGH

BEAM OR LOW BEAM.

17

virgo64-linux-github-code Documentation, Release latest

18 Chapter 7. based on if-else clause of the kernel_analytics variable i.e remote_client invokes
virgo_clone() with function argument “lights on” which is routed to another cloud node. The

recipient cloud node “learns” from AsFer kernel_analytics that Voltage is low or Battery is low
from logs and decides to switch in high beam or low beam.

CHAPTER

EIGHT

EXAMPLE SCENARIO 898.2 WITHOUT IMPLEMENTATION:

• A swivel security camera driver is remotely invoked via virgo_clone() in the VIRGO cloud.

• The camera driver uses a machine learnt variable exported by kernel_analytics-and-AsFer to pan the camera by
how much degrees.

• Autonomous Driverless Automobiles - a VIRGO driver for a vehicle which learns kernel analytics
variables (driving directions) set by kernel_analytics driver and AsFer Machine Learning. A naive
algorithm for Driverless Car (with some added modifications over A-Star and Motion planning
algorithms):

– AsFer analytics receives obstacle distance data 360+360 degrees (vertical and horizontal) around the
vehicle (e.g ultrasound sensors) which is updated in a Spark DataFrame table with high frequency (100
times per second).

– VIRGO Linux kernel on vehicle has two special drivers for Gear-Clutch-Break-Accelerator-
Fuel(GCBAF) and Steering listening on some ports.

– AsFer analytics with high frequency computes threshold variables for applying break, clutch, gear,
velocity, direction, fuel changes which are written to kernel_analytics.conf realtime based on distance
data from Spark table.

– These analytics variables are continuously read by GCBAF and Steering drivers which autopilot the
vehicle.

– Above applies to Fly-by-wire aeronautics too with appropriate changes in analytics variables computed.

– The crucial parameter is the response time in variable computation and table updates which requires
a huge computing power unless the vehicle is hooked onto a Spark cloud in motion by wireless which
process the table and compute analytic variables.

E.g. Autopilot in Tesla Cars processes Petabytes of information (Smooth-as-Silk algorithm)
from sensors which are fed to neural networks computed on a cloud - https://www.teslarati.com/
tesla-firmware-v8-1-17-22-26-autopilot-2-0-smooth-silk-update-video/.

898.4 KernTune - http://repository.uwc.ac.za/xmlui/bitstream/handle/10566/53/Yi_KernTune(2007).pdf?
sequence=3 898.5 Self-learning, Predictive Systems - https://icri-ci.technion.ac.il/projects/past-projects/
machine-learning-for-architecture-self-learning-predictive-computer-systems/ 898.6 Linux Process Scheduling
and Machine Learning - http://www.cs.ucr.edu/~kishore/papers/tencon.pdf 898.7 Network Latency and Machine
Learning - https://users.soe.ucsc.edu/~slukin/rtt_paper.pdf 898.8 Machine Learning based Meta-Scheduler for
Multicore processors - https://books.google.co.in/books?id=1GWcHmCrl0QC&pg=PA528&lpg=PA528&dq=linux+
kernel+machine+learning&source=bl&ots=zfJsq_uu5q&sig=mMIUZ-oyJIwZXtYj4HntrQE8NSk&hl=en&sa=X&
ved=0CCAQ6AEwATgKahUKEwjs9sqF9vPIAhVBFZQKHbNtA6A

899. A Symmetric Multi Processing subsystem Scheduler that virtualizes all nodes in cloud (probably this would
involve improving the loadbalancer into a scheduler with priority queues)

19

https://www.teslarati.com/tesla-firmware-v8-1-17-22-26-autopilot-2-0-smooth-silk-update-video/
https://www.teslarati.com/tesla-firmware-v8-1-17-22-26-autopilot-2-0-smooth-silk-update-video/
http://repository.uwc.ac.za/xmlui/bitstream/handle/10566/53/Yi_KernTune(2007).pdf?sequence=3
http://repository.uwc.ac.za/xmlui/bitstream/handle/10566/53/Yi_KernTune(2007).pdf?sequence=3
https://icri-ci.technion.ac.il/projects/past-projects/machine-learning-for-architecture-self-learning-predictive-computer-systems/
https://icri-ci.technion.ac.il/projects/past-projects/machine-learning-for-architecture-self-learning-predictive-computer-systems/
http://www.cs.ucr.edu/~kishore/papers/tencon.pdf
https://users.soe.ucsc.edu/~slukin/rtt_paper.pdf
https://books.google.co.in/books?id=1GWcHmCrl0QC&pg=PA528&lpg=PA528&dq=linux+kernel+machine+learning&source=bl&ots=zfJsq_uu5q&sig=mMIUZ-oyJIwZXtYj4HntrQE8NSk&hl=en&sa=X&ved=0CCAQ6AEwATgKahUKEwjs9sqF9vPIAhVBFZQKHbNtA6A
https://books.google.co.in/books?id=1GWcHmCrl0QC&pg=PA528&lpg=PA528&dq=linux+kernel+machine+learning&source=bl&ots=zfJsq_uu5q&sig=mMIUZ-oyJIwZXtYj4HntrQE8NSk&hl=en&sa=X&ved=0CCAQ6AEwATgKahUKEwjs9sqF9vPIAhVBFZQKHbNtA6A
https://books.google.co.in/books?id=1GWcHmCrl0QC&pg=PA528&lpg=PA528&dq=linux+kernel+machine+learning&source=bl&ots=zfJsq_uu5q&sig=mMIUZ-oyJIwZXtYj4HntrQE8NSk&hl=en&sa=X&ved=0CCAQ6AEwATgKahUKEwjs9sqF9vPIAhVBFZQKHbNtA6A

virgo64-linux-github-code Documentation, Release latest

900. (FEATURE - ONGOING) Virgo is an effort to virtualize the cloud as a single machine - Here cloud is not
limited to servers and desktops but also mobile devices that run linux variants like Android, and other Mobile
OSes. In the longterm, Virgo may have to be ported or optimized for handheld devices. Boost::Python AsFer-
VIRGO system call invocations implemented in NeuronRain is framework for implementing python applications
interfacing with kernel. If deployed on Mobile processors (e.g by overlaying Android Kernel with VIRGO layer)
there are IDEs like QPython to develop python apps for Android.

901. (FEATURE - DONE) Memory Pooling Subsystem Driver - Virgo_malloc(), Virgo_set(), Virgo_get() and
Virgo_free() system calls and their Kernel Module Implementations. In addition to syscall path, telnet or
userspace socket client interface is also provided for both VIRGO CPU pooling(virgo_clone()) and VIRGO
Memory Pooling Drivers.

902. (FEATURE - DONE) Virgo Cloud File System with virgo_cloud_open(), virgo_cloud_read() ,
virgo_cloud_write() and virgo_cloud_close() commands invoked through telnet path has been implemented that
transcends disk storage in all nodes in the cloud. It is also fanciful feature addition that would make VIRGO a
complete all-pervading cloud platform. The remote telnet clients send the file path and the buf to be read or data
to be written. The Virgo File System kernel driver service creates a unique Virgo File Descriptor for each struct
file* opened by filp_open() and is returned to client. Earlier design option to use a hashmap (linux/hashmap.h)
looked less attractive as file desciptor is an obvious unique description for open file and also map becomes
unscalable. The kernel upcall path has been implemented (paramIsExecutable=0) and may not be necessary in
most cases and all above cloudfs commands work in kernelspace using VFS calls.

903. (FEATURE - DONE) VIRGO Cloud File System commands through syscall paths -
virgo_open(),virgo_close(),virgo_read() and virgo_write(). All the syscalls have been implemented with test-
cases and more bugs fixed. After fullbuild and testing, virgo_open() and virgo_read() work and copy_to_user()
is working.

904. (FEATURE - DONE) VIRGO memory pooling feature is also a distributed key-value store similar to other
prominent key-store software like BigTable implementations, Dynamo, memory caching tools etc., but with a
difference that VIRGO mempool is implemented as part of Linux Kernel itself thus circumventing userspace
latencies. Due to Kernel space VIRGO mempool has an added power to store and retrieve key-value pair in
hardware devices directly which otherwise is difficult in userspace implementations.

905. VIRGO memory pooling can be improved with disk persistence for in-memory key-value store using
virgo_malloc(),virgo_set(),virgo_get() and virgo_free() calls. Probably this might be just a set of invocations
of read and write ops in disk driver or using sysfs. Probably this could be redundant as the VIRGO filesystem
primitives have been implemented that write to a remote host’s filesystem in kernelspace.

906. (FEATURE-DONE) Socket Debugging, Program Analysis and Verification features for user code that can find
bugs statically. Socket skbuff debug utility and SATURN Program Analysis Software has been integrated into
NEURONRAIN VIRGO Linux Kernel.

907. (FEATURE - DONE-Minimum Functionality) Operating System Logfile analysis using Machine Learning
code in AstroInfer for finding patterns of processes execution and learn rules from the log. Kernel_Analytics
VIRGO module reads /etc/virgo_kernel_analytics.conf config key-value pairs which are set by AsFer or other
Machine Learning Software. At present an Apache Spark usecase that mines Uncomplicated Fire Wall logs
in kern.log for most prominent source IP has been implemented in AsFer codebase : http://sourceforge.net/
p/asfer/code/704/tree/python-src/SparkKernelLogMapReduceParser.py . This is set as a key-value config in
/etc/virgo_kernel_analytics.conf read and exported by kernel_analytics module.

908. (USERSPACE C++ usecase implemented in GRAFIT course material - https://gitlab.com/shrinivaasanka/Grafit)
Implementations of prototypical Software Transactional Memory and LockFree Datastructures for VIRGO mem-
ory pooling.

909. Scalability features for Multicore machines - references: (http://halobates.de/lk09-scalability.pdf, http://pdos.
csail.mit.edu/papers/linux:osdi10.pdf)

910. (USERSPACE C++ usecase implemented in GRAFIT course material - https://gitlab.com/shrinivaasanka/Grafit)
Read-Copy-Update algorithm implementation for VIRGO memory pooling that supports multiple simultaneous

20 Chapter 8. Example scenario 898.2 without implementation:

http://sourceforge.net/p/asfer/code/704/tree/python-src/SparkKernelLogMapReduceParser.py
http://sourceforge.net/p/asfer/code/704/tree/python-src/SparkKernelLogMapReduceParser.py
https://gitlab.com/shrinivaasanka/Grafit
http://halobates.de/lk09-scalability.pdf
http://pdos.csail.mit.edu/papers/linux:osdi10.pdf
http://pdos.csail.mit.edu/papers/linux:osdi10.pdf
https://gitlab.com/shrinivaasanka/Grafit

virgo64-linux-github-code Documentation, Release latest

versions of memory for readers - widely used in redesigned Linux Kernel.

911. (FEATURE - SATURN integration - minimum functionality DONE) Program Comprehension features as an
add-on described in : https://sites.google.com/site/kuja27/PhDThesisProposal.pdf?attredirects=0. SATURN
program analysis has been integrated into VIRGO linux with a stub driver.

912. (FEATURE - DONE) Bakery Algorithm implementation - cloudsync kernel module

913. (FEATURE - minimal EventNet Logical Clock primitive implemented in AstroInfer and this section is an
extended draft on respective topics in NeuronRain AstroInfer design - https://github.com/shrinivaasanka/
asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt) Implementation of Distributed Systems prim-
itives for VIRGO cloud viz., Logical Clocks, Termination Detection, Snapshots, Cache Coherency subsystem
etc.,(as part of cloudsync driver module). Already a simple timestamp generation feature has been implemented
for KingCobra requests with <ipaddress>:<localmachinetimestamp> format

914. (FEATURE - minimum functionality DONE - this section is an extended draft on respective packing/filling/tiling
topics in NeuronRain AstroInfer design specific to kernel SLAB allocator - https://github.com/shrinivaasanka/
asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt) Enhancements to kmem if it makes sense, because it
is better to rely on virgo_malloc() for per machine memory management and wrap it around with a cloudwide VIRGO
Unique ID based address lookup implementation of which is already in place. Kernel Malloc syscall kmalloc() inter-
nally works as follows:

• kmem_cache_t object has pointers to 3 lists

• These 3 lists are full objects SLAB list, partial objects SLAB list and free objects SLAB list - all are
lists of objects of same size

and cache_cache is the global list of all caches created thus far.

• Any kmalloc() allocation searches partial objects SLAB list and allocates a memory block with
kmem_cache_alloc() from the first SLAB available - returned to caller.

• Any kfree() returns an object to a free SLAB list

• Full SLABs are removed from partial SLAB list and appended to full SLAB list

• SLABs are virtual memory pages created with kmem_cache_create

• Each SLAB in SLABs list has blocks of similar sized objects (e.g. multiples of two). Closest
matching block is returned and fragmentation is minimized (incidentally this is the knapsack
and packing optimization LP problem and thus NP-complete).

KERNELSPACE: VIRGO address translation table already implements a tree registry of vtables each of capacity
3000 that keep track of kmalloc() allocations across all cloud nodes. Implementation of SLAB allocator for kmalloc()
creates a kmem_cache(s) of similar sized objects and kmem_cache_alloc() allocates from these caches. kmalloc()
already does lot of per-machine optimizations. VIRGO vtable registry tree maintained in VIRGO memory syscall
end combined with per-machine kmalloc() cache_cache already look sufficient. Instrumenting kmem_cache_create()
with #ifdef SLAB_CLOUD_MALLOC flags to do RPC looks superfluous. Hence marking this action item as done.
Any further optimization can be done on top of existing VIRGO address translation table struct - e.g bookkeeping
flags, function pointers etc.,. USERSPACE: sbrk() and brk() are no longer used internally in malloc() library routines.
Instead mmap() has replaced it (http://web.eecs.utk.edu/courses/spring2012/cs360/360/notes/Malloc1/lecture.html,
http://web.eecs.utk.edu/courses/spring2012/cs360/360/notes/Malloc1/diff.html).

915. (FEATURE - ONGOING) Cleanup the code and remove unnecessary comments.

916. (FEATURE - DONE) Documentation - This design document is also a documentation for commit notes and
other build and debugging technical details. Doxygen html cross-reference documentation for AsFer, USBmd,
VIRGO, KingCobra and Acadpdrafts has been created along with summed-up design document and committed
to GitHub Repository at https://github.com/shrinivaasanka/Krishna_iResearch_DoxygenDocs

917. (FEATURE - DONE) Telnet path to virgo_cloud_malloc,virgo_cloud_set and virgo_cloud_get has been tested
and working. This is similar to memcached but stores key-value in kernelspace (and hence has the ability to

21

https://sites.google.com/site/kuja27/PhDThesisProposal.pdf?attredirects=0
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
https://github.com/shrinivaasanka/asfer-github-code/blob/master/asfer-docs/AstroInferDesign.txt
http://web.eecs.utk.edu/courses/spring2012/cs360/360/notes/Malloc1/lecture.html
http://web.eecs.utk.edu/courses/spring2012/cs360/360/notes/Malloc1/diff.html
https://github.com/shrinivaasanka/Krishna_iResearch_DoxygenDocs

virgo64-linux-github-code Documentation, Release latest

write to and retrieve from any device driver memory viz., cards, handheld devices).An optional todo is to write
a script or userspace socket client that connects to VIRGO mempool driver for these commands.

918. Augment the Linux kernel workqueue implementation (http://lxr.free-electrons.com/source/kernel/workqueue.
c) with disk persistence if feasible and doesn’t break other subsystems - this might require additional persistence
flags in work_struct and additional #ifdefs in most of the queue functions that write and read from the disk.
Related to item 6 above.

919. (FEATURE - DONE) VIRGO queue driver with native userspace queue and kernel workqueue-
handler framework that is optionally used for KingCobra and is invoked through VIRGO cpupool-
ing and memorypooling drivers. (Schematic in http://sourceforge.net/p/kcobra/code-svn/HEAD/tree/
KingCobraDesignNotes.txt and http://sourceforge.net/p/acadpdrafts/code/ci/master/tree/Krishna_iResearch_
opensourceproducts_archdiagram.pdf)

920. (FEATURE - DONE) KERNELSPACE EXECUTION ACROSS CLOUD NODES which geographically dis-
tribute userspace and kernelspace execution creating a logical abstraction for a cloudwide virtualized kernel:

Remote Cloud Node Client (cpupooling, eventnet, memorypooling, cloudfs, queueing - telnet
and syscalls clients)

(Userspace) |

|————————————-Kernel Sockets————————————-> Remote Cloud
Node Service

(VIRGO cpupooling, memorypooling, cloudfs, queue, KingCobra drivers)

(Kernelspace execution)

V

<————————————-Kernel Sockets——————————————— | | |

(Userspace) |

921. (FEATURE - DONE) VIRGO platform as on 5 May 2014 implements a minimum set of fea-
tures and kernelsocket commands required for a cloud OS kernel: CPU virtualization(virgo_clone),
Memory virtualization(virgo_malloc,virgo_get,virgo_set,virgo_free) and a distributed cloud file sys-
tem(virgo_open,virgo_close,virgo_read,virgo_write) on the cloud nodes and thus gives a logical view of
one unified, distributed linux kernel across all cloud nodes that splits userspace and kernelspace execution
across cloud as above.

922. (FEATURE - DONE) VIRGO Queue standalone kernel service has been implemented in addition to paths in
schematics above. VIRGO Queue listens on hardcoded port 60000 and enqueues the incoming requests to VIRGO
queue which is serviced by KingCobra:

VIRGO Queue client(e.g telnet) ——> VIRGO Queue kernel service —> Linux Workqueue handler ——> KingCobra

923. (FEATURE - DONE) EventNet kernel module service: VIRGO eventnet client (telnet) ——-> VIRGO EventNet
kernel service —–> EventNet graph text files

924. (FEATURE - DONE) Related to point 22 - Reuse EventNet cloudwide logical time infinite graph in AsFer in
place of Logical clocks. At present the eventnet driver listens on port 20000 and writes the edges and vertices
files in kernel using vfs_read()/vfs_write(). These text files can then be read by the AsFer code to generate DOT
files and visualize the graph with graphviz.

22 Chapter 8. Example scenario 898.2 without implementation:

http://lxr.free-electrons.com/source/kernel/workqueue.c
http://lxr.free-electrons.com/source/kernel/workqueue.c
http://sourceforge.net/p/kcobra/code-svn/HEAD/tree/KingCobraDesignNotes.txt
http://sourceforge.net/p/kcobra/code-svn/HEAD/tree/KingCobraDesignNotes.txt
http://sourceforge.net/p/acadpdrafts/code/ci/master/tree/Krishna_iResearch_opensourceproducts_archdiagram.pdf
http://sourceforge.net/p/acadpdrafts/code/ci/master/tree/Krishna_iResearch_opensourceproducts_archdiagram.pdf

virgo64-linux-github-code Documentation, Release latest

925. (FEATURE - OPTIONAL) The kernel modules services listening on ports could return a JSON response when
connected instead of plaintext, conforming to REST protocol. Additional options for protocol buffers which are
becoming a standard data interchange format.

926. (FEATURE-Minimum Functionality DONE) Pointer Swizzling and Unswizzling of VIRGO addressspace point-
ers to/from VIRGO Unique ID (VUID). Presently VIRGO memory system calls implement a basic minimal
pointer address translation to unique kmem location identifier.

8.1 CODE COMMIT RELATED NOTES

8.1. CODE COMMIT RELATED NOTES 23

virgo64-linux-github-code Documentation, Release latest

24 Chapter 8. Example scenario 898.2 without implementation:

CHAPTER

NINE

927. VIRGO CODE COMMITS AS ON 16/05/2013

1. VIRGO cloudexec driver with a listener kernel thread service has been implemented and it listens on port 10000 on
system startup through /etc/modules load-on-bootup facility

2. VIRGO cloudexec virgo_clone() system call has been implemented that would kernel_connect() to the VIRGO
cloudexec service listening at port 10000

3. VIRGO cloudexec driver has been split into virgo.h (VIRGO typedefs), virgocloudexecsvc.h(VIRGO cloudexec ser-
vice that is invoked by module_init() of VIRGO cloudexec driver) and virgo_cloudexec.c (with module ops definitions)

4. VIRGO does not implement SUN RPC interface anymore and now has its own virgo ops.

5. Lot of Kbuild related commits with commented lines for future use have been done viz., to integrate VIRGO to
Kbuild, KBUILD_EXTRA_SYMBOLS for cross-module symbol reference.

25

virgo64-linux-github-code Documentation, Release latest

26 Chapter 9. 927. VIRGO code commits as on 16/05/2013

CHAPTER

TEN

928. VIRGO CODE COMMITS AS ON 20/05/2013

1. test_virgo_clone.c testcase for sys_virgo_clone() system call works and connections are established to VIRGO
cloudexec kernel module.

2. Makefile for test_virgo_clone.c and updated buildscript.sh for headers_install for custom-built linux.

27

virgo64-linux-github-code Documentation, Release latest

28 Chapter 10. 928. VIRGO code commits as on 20/05/2013

CHAPTER

ELEVEN

929. VIRGO CODE COMMITS AS ON 6/6/2013

1. Message header related bug fixes

29

virgo64-linux-github-code Documentation, Release latest

30 Chapter 11. 929. VIRGO code commits as on 6/6/2013

CHAPTER

TWELVE

930. VIRGO CODE COMMITS AS ON 25/6/2013

1.telnet to kernel service was tested and found working 2.GFP_KERNEL changed to GFP_ATOMIC in VIRGO
cloudexec kernel service

31

virgo64-linux-github-code Documentation, Release latest

32 Chapter 12. 930. VIRGO code commits as on 25/6/2013

CHAPTER

THIRTEEN

931. VIRGO CODE COMMITS AS ON 1/7/2013

1. Instead of printing iovec, printing buffer correctly prints the messages

2. wake_up_process() added and function received from virgo_clone() syscall is executed with kernel_thread and
results returned to virgo_clone() syscall client.

33

virgo64-linux-github-code Documentation, Release latest

34 Chapter 13. 931. VIRGO code commits as on 1/7/2013

CHAPTER

FOURTEEN

932. COMMIT AS ON 03/07/2013

PRG loadbalancer preliminary code implemented. More work to be done

35

virgo64-linux-github-code Documentation, Release latest

36 Chapter 14. 932. commit as on 03/07/2013

CHAPTER

FIFTEEN

933. COMMIT AS ON 10/07/2013

Tested PRG loadbalancer read config code through telnet and virgo_clone. VFS code to read from virgo_cloud.conf
commented for testing

37

virgo64-linux-github-code Documentation, Release latest

38 Chapter 15. 933. commit as on 10/07/2013

CHAPTER

SIXTEEN

934. COMMITS AS ON 12/07/2013

PRG loadbalancer prototype has been completed and tested with test_virgo_clone and telnet and symbol export errors
and PRG errors have been fixed

39

virgo64-linux-github-code Documentation, Release latest

40 Chapter 16. 934. commits as on 12/07/2013

CHAPTER

SEVENTEEN

935. COMMITS AS ON 16/07/2013

read_virgo_config() and read_virgo_clone_config()(replica of read_virgo_config()) have been implemented and tested
to read the virgo_cloud.conf config parameters(at present the virgo_cloud.conf has comma separated list of ip addresses.
Port is hardcoded to 10000 for uniformity across all nodes). Thus minimal cloud functionality with config file support
is in place. Todo things include function pointer lookup in kernel service, more parameters to cloud config file if
needed, individual configs for virgo_clone() and virgo kernel service, kernel-to-userspace upcall and execution instead
of kernel space, performance tuning etc.,

41

virgo64-linux-github-code Documentation, Release latest

42 Chapter 17. 935. commits as on 16/07/2013

CHAPTER

EIGHTEEN

936. COMMITS AS ON 17/07/2013

moved read_virgo_config() to VIRGOcloudexec’s module_init so that config is read at boot time and exported symbols
are set beforehand. Also commented read_virgo_clone_config() as it is redundant

43

virgo64-linux-github-code Documentation, Release latest

44 Chapter 18. 936. commits as on 17/07/2013

CHAPTER

NINETEEN

937. COMMITS AS ON 23/07/2013

Lack of reflection kind of facilities requires map of function_names to pointers_to_functions to be executed on cloud
has to be lookedup in the map to get pointer to function. This map is not scalable if number of functions are in millions
and size of the map increases linearly. Also having it in memory is both CPU and memory intensive. Moreover this
map has to be synchronized in all nodes for coherency and consistency which is another intensive task. Thus name to
pointer function table is at present not implemented. Suitable way to call a function by name of the function is yet to
be found out and references in this topic are scarce.

If parameterIsExecutable is set to 1 the data received from virgo_clone() is not a function but name of executable This
executable is then run on usermode using call_usermodehelper() which internally takes care of queueing the workstruct
and executes the binary as child of keventd and reaps silently. Thus workqueue component of kernel is indirectly made
use of. This is sometimes more flexible alternative that executes a binary itself on cloud and is preferable to clone()ing
a function on cloud. Virgo_clone() syscall client or telnet needs to send the message with name of binary.

If parameterIsExecutable is set to 0 then data received from virgo_clone() is name of a function and is executed in else
clause using dlsym() lookup and pthread_create() in user space. This unifies both call_usermodehelper() and creating
a userspace thread with a fixed binary which is same for any function. The dlsym lookup requires mangled function
names which need to be sent by virgo_clone or telnet. This is far more efficient than a function pointer table.

call_usermodehelper() Kernel upcall to usermode to exec a fixed binary that would inturn execute the cloneFunction
in userspace by spawning a pthread. cloneFunction is name of the function and not binary. This clone function will
be dlsym()ed and a pthread will be created by the fixed binary. Name of the fixed binary is hardcoded herein as
“virgo_kernelupcall_plugin”. This fixed binary takes clone function as argument. For testing libvirgo.so has been
created from virgo_cloud_test.c and separate build script to build the cloud function binaries has been added.

• Ka.Shrinivaasan (alias) Shrinivas Kannan (alias) Srinivasan Kannan (https://sites.google.com/site/kuja27)

45

https://sites.google.com/site/kuja27

virgo64-linux-github-code Documentation, Release latest

46 Chapter 19. 937. commits as on 23/07/2013

CHAPTER

TWENTY

938. COMMITS AS ON 24/07/2013

test_virgo_clone unit test case updated with mangled function name to be sent to remote cloud node. Tested with
test_virgo_clone end-to-end and all features are working. But sometimes kernel_connect hangs randomly (this was
observed only today and looks similar to blocking vs non-blocking problem. Origin unknown).

• Ka.Shrinivaasan (alias) Shrinivas Kannan (alias) Srinivasan Kannan (https://sites.google.com/site/kuja27)

47

https://sites.google.com/site/kuja27

virgo64-linux-github-code Documentation, Release latest

48 Chapter 20. 938. commits as on 24/07/2013

CHAPTER

TWENTYONE

939. COMMITS AS ON 29/07/2013

Added kernel mode execution in the clone_func and created a sample kernel_thread for a cloud function. Some File
IO logging added to upcall binaries and parameterIsExecutable has been moved to virgo.h

49

virgo64-linux-github-code Documentation, Release latest

50 Chapter 21. 939. commits as on 29/07/2013

CHAPTER

TWENTYTWO

940. COMMITS AS ON 30/07/2013

New usecase virgo_cloud_test_kernelspace.ko kernel module has been added. This exports a function
virgo_cloud_test_kernelspace() and is accessed by virgo_cloudexec kernel service to spawn a kernel thread that is
executed in kernel addresspace. This Kernel mode execution on cloud adds a unique ability to VIRGO cloud platform
to seamlessly integrate hardware devices on to cloud and transparently send commands to them from a remote cloud
node through virgo_clone().

Thus above feature adds power to VIRGO cloud to make it act as a single “logical device driver” though devices are in
geographically in a remote server.

51

virgo64-linux-github-code Documentation, Release latest

52 Chapter 22. 940. commits as on 30/07/2013

CHAPTER

TWENTYTHREE

941. COMMITS AS ON 01/08/2013 AND 02/08/2013

Added Bash shell commandline with -c option for call_usermodehelper upcall clauses to pass in remote virgo_clone
command message as arguments to it. Also tried output redirection but it works some times that too with a fatal kernel
panic.

Ideal solutions are : 1. either to do a copy_from_user() for message buffer from user address space (or) 2. somehow
rebuild the kernel with fd_install() pointing stdout to a VFS file* struct. In older kernels like 2.6.x, there is an fd_install
code with in kmod.c (___call_usermodehelper()) which has been redesigned in kernel 3.x versions and fd_install has
been removed in kmod.c . 3. Create a Netlink socket listener in userspace and send message up from kernel Netlink
socket.

All the above are quite intensive and time consuming to implement.Moreover doing FileIO in usermode helper is
strongly discouraged in kernel docs

Since Objective of VIRGO is to virtualize the cloud as single execution “machine”, doing an upcall (which would run
with root abilities) is redundant often and kernel mode execution is sufficient. Kernel mode execution with intermodule
function invocation can literally take over the entire board in remote machine (since it can access PCI bus, RAM and
all other device cards)

As a longterm design goal, VIRGO can be implemented as a separate protocol itself and sk_buff packet payload from
remote machine can be parsed by kernel service and kernel_thread can be created for the message.

53

virgo64-linux-github-code Documentation, Release latest

54 Chapter 23. 941. commits as on 01/08/2013 and 02/08/2013

CHAPTER

TWENTYFOUR

942. COMMITS AS ON 05/08/2013:

Major commits done for kernel upcall usermode output logging with fd_install redirection to a VFS file. With this it
has become easy for user space to communicate runtime data to Kernel space. Also a new strip_control_M() function
has been added to strip rn or ” “.

55

virgo64-linux-github-code Documentation, Release latest

56 Chapter 24. 942. commits as on 05/08/2013:

CHAPTER

TWENTYFIVE

943. 11 AUGUST 2013:

Open Source Design and Academic Research Notes uploaded to http://sourceforge.net/projects/acadpdrafts/files/
MiscellaneousOpenSourceDesignAndAcademicResearchNotes_2013-08-11.pdf/download

57

http://sourceforge.net/projects/acadpdrafts/files/MiscellaneousOpenSourceDesignAndAcademicResearchNotes_2013-08-11.pdf/download
http://sourceforge.net/projects/acadpdrafts/files/MiscellaneousOpenSourceDesignAndAcademicResearchNotes_2013-08-11.pdf/download

virgo64-linux-github-code Documentation, Release latest

58 Chapter 25. 943. 11 August 2013:

CHAPTER

TWENTYSIX

944. COMMITS AS ON 23 AUGUST 2013

New Multithreading Feature added for VIRGO Kernel Service - action item 5 in ToDo list above (virgo_cloudexec
driver module). All dependent headers changed for kernel threadlocalizing global data.

59

virgo64-linux-github-code Documentation, Release latest

60 Chapter 26. 944. commits as on 23 August 2013

CHAPTER

TWENTYSEVEN

945. COMMITS AS ON 1 SEPTEMBER 2013

GNU Copyright license and Product Owner Profile (for identity of license issuer) have been commit-
ted. Also Virgo Memory Pooling - virgo_malloc() related initial design notes (handwritten scanned)
have been committed(http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGO_Memory_
Pooling_virgomalloc_initial_design_notes.pdf)

61

http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGO_Memory_Pooling_virgomalloc_initial_design_notes.pdf
http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGO_Memory_Pooling_virgomalloc_initial_design_notes.pdf

virgo64-linux-github-code Documentation, Release latest

62 Chapter 27. 945. commits as on 1 September 2013

CHAPTER

TWENTYEIGHT

946. COMMITS AS ON 14 SEPTEMBER 2013

Updated virgo malloc design handwritten nodes on kmalloc() and malloc() usage in kernelspace and userspace ex-
ecution mode of virgo_cloudexec service (http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/
VIRGO_Memory_Pooling_virgomalloc_design_notes_2_14September2013.pdf). As described in handwritten notes,
virgo_malloc() and related system calls might be needed when a large scale allocation of kernel memory is needed when
in kernel space execution mode and large scale userspace memory when in user modes (function and executable modes).
Thus a cloud memory pool both in user and kernel space is possible.

VIRGO virtual address is defined with the following datatype:

struct virgo_address {

int node_id; void* addr;

};

VIRGO address translation table is defined with following datatype:

struct virgo_addr_transtable {

int node_id; void* addr;

};

VIRGO memory pooling implementation as per the design notes committed as above is to be implemented as a pro-
totype under separate directory under drivers/virgo/memorypooling and $LINUX_SRC_ROOT/virgo_malloc. But the
underlying code is more or less similar to drivers/virgo/cpupooling and $LINUX_SRC_ROOT/virgo_clone.

virgo_malloc() and related syscalls and virgo mempool driver connect to and listen on port different from cpupooling
driver. Though all these code can be within cpupooling itself, mempooling is implemented as separate driver and
co-exists with cpupooling on bootup (/etc/modules). This enables clear demarcation of functionalities for CPU and
Memory virtualization.

63

http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGO_Memory_Pooling_virgomalloc_design_notes_2_14September2013.pdf
http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGO_Memory_Pooling_virgomalloc_design_notes_2_14September2013.pdf

virgo64-linux-github-code Documentation, Release latest

64 Chapter 28. 946. commits as on 14 September 2013

CHAPTER

TWENTYNINE

949. COMMITS AS ON 17 SEPTEMBER 2013

Initial untested prototype code - virgo_malloc and virgo mempool driver - for VIRGO Memory Pooling has been
committed - copied and modified from virgo_clone client and kernel driver service.

65

virgo64-linux-github-code Documentation, Release latest

66 Chapter 29. 949. Commits as on 17 September 2013

CHAPTER

THIRTY

950. COMMITS AS ON 19 SEPTEMBER 2013

3.7.8 Kernel full build done and compilation errors in VIRGO malloc and mempool driver code and more functions
code added

67

virgo64-linux-github-code Documentation, Release latest

68 Chapter 30. 950. Commits as on 19 September 2013

CHAPTER

THIRTYONE

951. COMMITS AS ON 23 SEPTEMBER 2013

Updated virgo_malloc.c with two functions, int_to_str() and addr_to_str(), using kmalloc() with full kernel re-build.
(Rather a re-re-build because some source file updates in previous build got deleted somehow mysteriously. This could
be related to Cybercrime issues mentioned in https://sourceforge.net/p/usb-md/code-0/HEAD/tree/USBmd_notes.txt
)

69

https://sourceforge.net/p/usb-md/code-0/HEAD/tree/USBmd_notes.txt

virgo64-linux-github-code Documentation, Release latest

70 Chapter 31. 951. Commits as on 23 September 2013

CHAPTER

THIRTYTWO

952. COMMITS AS ON 24 SEPTEMBER 2013

Updated syscall*.tbl files, staging.sh, Makefiles for virgo_malloc(),virgo_set(),virgo_get() and virgo_free() memory
pooling syscalls. New testcase test_virgo_malloc for virgo_malloc(), virgo_set(), virgo_get(), virgo_free() has been
added to repository. This testcase might have to be updated if return type and args to virgo_malloc+ syscalls are to be
changed.

71

virgo64-linux-github-code Documentation, Release latest

72 Chapter 32. 952. Commits as on 24 September 2013

CHAPTER

THIRTYTHREE

953. COMMITS AS ON 25 SEPTEMBER 2013

All build related errors fixed after kernel rebuild some changes made to function names to reflect their names specific
to memory pooling. Updated /etc/modules also has been committed to repository.

73

virgo64-linux-github-code Documentation, Release latest

74 Chapter 33. 953. Commits as on 25 September 2013

CHAPTER

THIRTYFOUR

954. COMMITS AS ON 26 SEPTEMBER 2013

Circular dependency error in standalone build of cpu pooling and memory pooling drivers fixed and datatypes and
declarations for CPU pooling and Memory Pooling drivers have been segregated into respective header files (virgo.h
and virgo_mempool.h with corresponding service header files) to avoid any dependency error.

75

virgo64-linux-github-code Documentation, Release latest

76 Chapter 34. 954. Commits as on 26 September 2013

CHAPTER

THIRTYFIVE

955. COMMITS AS ON 27 SEPTEMBER 2013

Major commits for Memory Pooling Driver listen port change and parsing VIRGO memory pooling commands have
been done.

77

virgo64-linux-github-code Documentation, Release latest

78 Chapter 35. 955. Commits as on 27 September 2013

CHAPTER

THIRTYSIX

956. COMMITS AS ON 30 SEPTEMBER 2013

New parser functions added for parameter parsing and initial testing on virgo_malloc() works with telnet client with
logs in test_logs/

79

virgo64-linux-github-code Documentation, Release latest

80 Chapter 36. 956. Commits as on 30 September 2013

CHAPTER

THIRTYSEVEN

957. COMMITS AS ON 1 OCTOBER 2013

Removed strcpy in virgo_malloc as ongoing bugfix for buffer truncation in syscall path.

81

virgo64-linux-github-code Documentation, Release latest

82 Chapter 37. 957. Commits as on 1 October 2013

CHAPTER

THIRTYEIGHT

958. COMMITS AS ON 7 OCTOBER 2013

Fixed the buffer truncation error from virgo_malloc syscall to mempool driver service which was caused by sizeof()
for a char*. BUF_SIZE is now used for size in both syscall client and mempool kernel service.

83

virgo64-linux-github-code Documentation, Release latest

84 Chapter 38. 958. Commits as on 7 October 2013

CHAPTER

THIRTYNINE

959. COMMITS AS ON 9 OCTOBER 2013 AND 10 OCTOBER 2013

Mempool driver kernelspace virgo mempool ops have been rewritten due to lack of facilities to return a value from ker-
nel thread function. Since mempool service already spawns a kthread, this seems to be sufficient. Also the iov.iov_len
in virgo_malloc has been changed from BUF_SIZE to strlen(buf) since BUF_SIZE causes the kernel socket to block
as it waits for more data to be sent.

85

virgo64-linux-github-code Documentation, Release latest

86 Chapter 39. 959. Commits as on 9 October 2013 and 10 October 2013

CHAPTER

FORTY

960. COMMITS AS ON 11 OCTOBER 2013

sscanf format error for virgo_cloud_malloc() return pointer address and sock_release() null pointer exception has been
rectified. Added str_to_addr() utility function.

87

virgo64-linux-github-code Documentation, Release latest

88 Chapter 40. 960. Commits as on 11 October 2013

CHAPTER

FORTYONE

961. COMMITS AS ON 14 OCTOBER 2013 AND 15 OCTOBER 2013

Updated todo list.

Rewritten virgo_cloud_malloc() syscall with: - mutexed virgo_cloud_malloc() loop - redefined virgo address transla-
tion table in virgo_mempool.h - str_to_addr(): removed (void**) cast due to null sscanf though it should have worked

89

virgo64-linux-github-code Documentation, Release latest

90 Chapter 41. 961. Commits as on 14 October 2013 and 15 October 2013

CHAPTER

FORTYTWO

962. COMMITS AS ON 18 OCTOBER 2013

Continued debugging of null sscanf - added str_to_addr2() which uses simple_strtoll() kernel function for scanning
pointer as long long from string and casting it to void*. Also more %p qualifiers where added in str_to_addr() for
debugging.

Based on latest test_virgo_malloc run, simple_strtoll() correctly parses the address string into a long long base 16 and
then is reinterpret_cast to void*. Logs in test/

91

virgo64-linux-github-code Documentation, Release latest

92 Chapter 42. 962. Commits as on 18 October 2013

CHAPTER

FORTYTHREE

963. COMMITS AS ON 21 OCTOBER 2013

Kern.log for testing after vtranstable addr fix with simple_strtoll() added to repository and still the other %p qualifiers
do not work and only simple_strtoll() parses the address correctly.

93

virgo64-linux-github-code Documentation, Release latest

94 Chapter 43. 963. Commits as on 21 October 2013

CHAPTER

FORTYFOUR

964. COMMITS AS ON 24 OCTOBER 2013

Lot of bugfixes made to virgo_malloc.c for scanning address into VIRGO transtable and size computation. Testcase
test_virgo_malloc.c has also been modified to do reinterpret cast of long long into (struct virgo_address*) and corre-
sponding test logs have been added to repository under virgo_malloc/test.

Though the above sys_virgo_malloc() works, the return value is a kernel pointer if the virgo_malloc executes in the Ker-
nel mode which is more likely than User mode (call_usermodehelper which is circuitous). Moreover copy_from_user()
or copy_to_user() may not be directly useful here as this is an address allocation routine. The long long reinterpret cast
obfuscates the virgo_address(User or Kernel) as a large integer which is a unique id for the allocated memory on cloud.
Initial testing of sys_virgo_set() causes a Kernel Panic as usual probably due to direct access of struct virgo_address*.
Alternatives are to use only long long for allocation unique-id everywhere or do copy_to_user() or copy_from_user() of
the address on a user supplied buffer. Also vtranstable can be made into a bucketed hash table that maps each alloc_id
to a chained virgo malloc chunks than the present sequential addressing which is more similar to open addressing.

95

virgo64-linux-github-code Documentation, Release latest

96 Chapter 44. 964. Commits as on 24 October 2013

CHAPTER

FORTYFIVE

965. COMMITS AS ON 25 OCTOBER 2013

virgo_malloc.c has been rewritten by adding a userspace __user pointer to virgo_get() and virgo_set() syscalls which
are internally copied with copy_from_user() and copy_to_user() kernel function to get and set userspace from ker-
nelspace.Header file syscalls.h has been updated with changed syscalls prototypes.Two functions have been added to
map a VIRGO address to a unique virgo identifier and viceversa for abstracting hardware addresses from userspace
as mentioned in previous commit notes. VIRGO cloud mempool kernelspace driver has been updated to use
virgo_mempool_args* instead of void* and VIRGO cloudexec mempool driverhas been updated accordingly during
intermodule invocation.The virgo_malloc syscall client has been updated to modified signatures and return types for
all mempool alloc,get,set,free syscalls.

97

virgo64-linux-github-code Documentation, Release latest

98 Chapter 45. 965. Commits as on 25 October 2013

CHAPTER

FORTYSIX

966. COMMITS AS ON 29 OCTOBER 2013

Miscellaneous ongoing bugfixes for virgo_set() syscall error in copy_from_user().

99

virgo64-linux-github-code Documentation, Release latest

100 Chapter 46. 966. Commits as on 29 October 2013

CHAPTER

FORTYSEVEN

967. COMMITS AS ON 2 NOVEMBER 2013

Due to an issue which corrupts the kernel memory, presently telnet path to VIRGO mempool driver has been tested
after commits on 31 October 2013 and 1 November 2013 and is working but again there is an issue in kstrtoul() that
returns the wrong address in virgo_cloud_mempool_kernelspace.ko that gives the address for data to set.

101

virgo64-linux-github-code Documentation, Release latest

102 Chapter 47. 967. Commits as on 2 November 2013

CHAPTER

FORTYEIGHT

968. COMMITS AS ON 6 NOVEMBER 2013

New parser function virgo_parse_integer() has been added to virgo_cloud_mempool_kernelspace driver module which
is carried over from lib/kstrtox.c and modified locally to add an if clause to discard quotes and unquotes. With this the
telnet path commands for virgo_malloc() and virgo_set() are working. Today’s kern.log has been added to repository
in test_logs/.

103

virgo64-linux-github-code Documentation, Release latest

104 Chapter 48. 968. Commits as on 6 November 2013

CHAPTER

FORTYNINE

969. COMMITS AS ON 7 NOVEMBER 2013

In addition to virgo_malloc and virgo_set, virgo_get is also working through telnet path after today’s commit for “vir-
godata:” prefix in virgo_cloud_mempool_kernelspace.ko. This prefix is needed to differentiate data and address so that
toAddressString() can be invoked to sprintf() the address in virgo_cloudexec_mempool.ko. Also mempool command
parser has been updated to strcmp() virgo_cloud_get command also.

105

virgo64-linux-github-code Documentation, Release latest

106 Chapter 49. 969. Commits as on 7 November 2013

CHAPTER

FIFTY

970. COMMITS AS ON 11 NOVEMBER 2013

More testing done on telnet path for virgo_malloc, virgo_set and virgo_get commands which work correctly. But there
seem to be unrelated kmem_cache_trace_alloc panics that follow each successful virgo command execution. kern.log
for this has been added to repository.

107

virgo64-linux-github-code Documentation, Release latest

108 Chapter 50. 970. Commits as on 11 November 2013

CHAPTER

FIFTYONE

971. COMMITS AS ON 22 NOVEMBER 2013

More testing done on telnet path for virgo_malloc,virgo_set and virgo_set after commenting kernel socket shutdown
code in the VIRGO cloudexec mempool sendto code. Kernel panics do not occur after commenting kernel socket
shutdown.

109

virgo64-linux-github-code Documentation, Release latest

110 Chapter 51. 971. Commits as on 22 November 2013

CHAPTER

FIFTYTWO

972. COMMITS AS ON 2 DECEMBER 2013

Lots of testing were done on telnet path and syscall path connection to VIRGO mempool driver and screenshots for
working telnet path (virgo_malloc, virgo_set and virgo_get) have been committed to repository. Intriguingly, the syscall
path is suddenly witnessing series of broken pipe erros, blocking errors etc., which are mostly Heisenbugs.

111

virgo64-linux-github-code Documentation, Release latest

112 Chapter 52. 972. Commits as on 2 December 2013

CHAPTER

FIFTYTHREE

973. COMMITS AS ON 5 DECEMBER 2013

More testing on system call path done for virgo_malloc(), virgo_set() and virgo_get() system calls with
test_virgo_malloc.c. All three syscalls work in syscall path after lot of bugfixes. Kern.log that has logs for allocat-
ing memory in remote cloud node with virgo_malloc, sets data “test_virgo_malloc_data” with virgo_set and retrieves
data with virgo_get.

VIRGO version 12.0 tagged.

113

virgo64-linux-github-code Documentation, Release latest

114 Chapter 53. 973. Commits as on 5 December 2013

CHAPTER

FIFTYFOUR

974. COMMITS AS ON 12 MARCH 2014

Initial VIRGO queueing driver implemented that flips between two internal queues: 1) a native queue implemented
locally and 2) wrapper around linux kernel’s workqueue facility 3) push_request() modified to pass on the request data
to the workqueue handler using container_of on a wrapper structure virgo_workqueue_request.

115

virgo64-linux-github-code Documentation, Release latest

116 Chapter 54. 974. Commits as on 12 March 2014

CHAPTER

FIFTYFIVE

975. COMMITS AS ON 20 MARCH 2014

• VIRGO queue with additional boolean flags for its use as KingCobra queue

• KingCobra kernel space driver that is invoked by the VIRGO workqueue handler

117

virgo64-linux-github-code Documentation, Release latest

118 Chapter 55. 975. Commits as on 20 March 2014

CHAPTER

FIFTYSIX

976. COMMITS AS ON 30 MARCH 2014

• VIRGO mempool driver has been augmented with use_as_kingcobra_service flags in CPU pooling and Memory
pooling drivers

119

virgo64-linux-github-code Documentation, Release latest

120 Chapter 56. 976. Commits as on 30 March 2014

CHAPTER

FIFTYSEVEN

977. COMMITS AS ON 6 APRIL 2014

• VIRGO mempool driver recvfrom() function’s if clause for KingCobra has been updated for REQUEST header
formatting mentioned in KingCobra design notes

121

virgo64-linux-github-code Documentation, Release latest

122 Chapter 57. 977. Commits as on 6 April 2014

CHAPTER

FIFTYEIGHT

978. COMMITS AS ON 7 APRIL 2014

• generate_logical_timestamp() function has been implemented in VIRGO mempool driver that generates times-
tamps based on 3 boolean flags. At present machine_timestamp is generated and prepended to the request to be
pushed to VIRGO queue driver and then serviced by KingCobra.

123

virgo64-linux-github-code Documentation, Release latest

124 Chapter 58. 978. Commits as on 7 April 2014

CHAPTER

FIFTYNINE

979. COMMITS AS ON 25 APRIL 2014

• client ip address in VIRGO mempool recvfrom KingCobra if clause is converted to host byte order from network
byte order with ntohl()

125

virgo64-linux-github-code Documentation, Release latest

126 Chapter 59. 979. Commits as on 25 April 2014

CHAPTER

SIXTY

980. COMMITS AS ON 5 MAY 2014

• Telnet path commands for VIRGO cloud file system - virgo_cloud_open(), virgo_cloud_read(),
virgo_cloud_write(), virgo_cloud_close() has been implemented and test logs have been added to reposi-
tory (drivers/virgo/cloudfs/ and cloudfs/testlogs) and kernel upcall path for paramIsExecutable=0

127

virgo64-linux-github-code Documentation, Release latest

128 Chapter 60. 980. Commits as on 5 May 2014

CHAPTER

SIXTYONE

981. COMMITS AS ON 7 MAY 2014

• Bugfixes to tokenization in kernel upcall plugin with strsep() for args passed on to the userspace

129

virgo64-linux-github-code Documentation, Release latest

130 Chapter 61. 981. Commits as on 7 May 2014

CHAPTER

SIXTYTWO

982. COMMITS AS ON 8 MAY 2014

• Bugfixes to virgo_cloud_fs.c for kernel upcall (parameterIsExecutable=0) and with these the kernel to userspace
upcall and writing to a file in userspace (virgofstest.txt) works. Logs and screenshots for this are added to
repository in test_logs/

131

virgo64-linux-github-code Documentation, Release latest

132 Chapter 62. 982. Commits as on 8 May 2014

CHAPTER

SIXTYTHREE

983. COMMITS AS ON 6 JUNE 2014

• VIRGO File System Calls Path implementation has been committed. Lots of Linux Full Build compilation errors
fixed and new integer parsing functionality added (similar to driver modules). For the timebeing all syscalls
invoke loadbalancer. This may be further optimized with a sticky flag to remember the first invocation which
might be usually virgo_open syscall to get the VFS descriptor that is used in subsequent syscalls.

133

virgo64-linux-github-code Documentation, Release latest

134 Chapter 63. 983. Commits as on 6 June 2014

CHAPTER

SIXTYFOUR

984. COMMITS AS ON 3 JULY 2014

• More testing and bugfixes for VIRGO File System syscalls have been done. virgo_write() causes kernel panic.

135

virgo64-linux-github-code Documentation, Release latest

136 Chapter 64. 984. Commits as on 3 July 2014

CHAPTER

SIXTYFIVE

985. 7 JULY 2014 - VIRGO_WRITE() KERNEL PANIC NOTES:

warning within http://lxr.free-electrons.com/source/arch/x86/kernel/smp.c#L121:

static void native_smp_send_reschedule(int cpu) {

if (unlikely(cpu_is_offline(cpu))) {
WARN_ON(1); return;

} apic->send_IPI_mask(cpumask_of(cpu), RESCHEDULE_VECTOR);

}

This is probably a fixed kernel bug in <3.7.8 but recurring in 3.7.8: - http://lkml.iu.edu/hypermail/linux/kernel/1205.3/
00653.html - http://www.kernelhub.org/?p=3&msg=74473&body_id=72338 - http://lists.openwall.net/linux-kernel/
2012/09/07/22 - https://bugzilla.kernel.org/show_bug.cgi?id=54331 - https://bbs.archlinux.org/viewtopic.php?id=
156276

137

http://lxr.free-electrons.com/source/arch/x86/kernel/smp.c#L121
http://lkml.iu.edu/hypermail/linux/kernel/1205.3/00653.html
http://lkml.iu.edu/hypermail/linux/kernel/1205.3/00653.html
http://www.kernelhub.org/?p=3&msg=74473&body_id=72338
http://lists.openwall.net/linux-kernel/2012/09/07/22
http://lists.openwall.net/linux-kernel/2012/09/07/22
https://bugzilla.kernel.org/show_bug.cgi?id=54331
https://bbs.archlinux.org/viewtopic.php?id=156276
https://bbs.archlinux.org/viewtopic.php?id=156276

virgo64-linux-github-code Documentation, Release latest

138 Chapter 65. 985. 7 July 2014 - virgo_write() kernel panic notes:

CHAPTER

SIXTYSIX

986. COMMITS AS ON 29 JULY 2014

All VIRGO drivers(cloudfs, queuing, cpupooling and memorypooling) have been built on 3.15.5 kernel with some
Makefile changes for ccflags and paths

139

virgo64-linux-github-code Documentation, Release latest

140 Chapter 66. 986. Commits as on 29 July 2014

CHAPTER

SIXTYSEVEN

987. (FEATURE - DONE) VIRGO KERNEL MODULES AND SYSTEM
CALLS MAJOR REWRITE FOR 3.15.5 KERNEL - 17 AUGUST 2014

1. VIRGO config files have been split into /etc/virgo_client.conf and /etc/virgo_cloud.conf to delink the cloud client
and kernel service config parameters reading and to do away with oft occurring symbol lookup errors and multiple
definition errors for num_cloud_nodes and node_ip_addrs_in_cloud - these errors are frequent in 3.15.5 kernel than
3.7.8 kernel.

2. Each VIRGO module and system call now reads the config file independent of others - there is a
read_virgo_config_<module>_<client_or_service>() function variant for each driver and system call. Though
at present smacks of a replicated code, in future the config reads for each component (system call or module)
might vary significantly depending on necessities.

3. New kernel module config has been added in drivers/virgo. This is for future prospective use as a config export
driver that can be looked up by any other VIRGO module for config parameters.

4. include/linux/virgo_config.h has the declarations for all the config variables declared within each of the VIRGO
kernel modules.

5. Config variables in each driver and system call have been named with prefix and suffix to differentiate the module
and/or system call it serves.

6. In geographically distributed cloud virgo_client.conf has to be in client nodes and virgo_cloud.conf has to be
in cloud nodes. For VIRGO Queue - KingCobra REQUEST-REPLY peer-to-peer messaging system same node
can have virgo_client.conf and virgo_cloud.conf.

7. Above segregation largely simplifies the build process as each module and system call is independently built
without need for a symbol to be exported from other module by pre-loading it.

8. VIRGO File system driver and system calls have been tested with above changes and the
virgo_open(),virgo_read() and virgo_write() calls work with much less crashes and freeze problems com-
pared to 3.7.8 (some crashes in VIRGO FS syscalls in 3.7.8 where already reported kernel bugs which seem to
have been fixed in 3.15.5). Today’s kern.log test logs have been committed to repository.

Commenting use_as_kingcobra_service if clauses temporarily as disabling also doesnot work and only commenting the
block works for VIRGO syscall path. Quite weird as to how this relates to the problem. As this is a heisenbug further
testing is difficult and sufficient testing has been done with logs committed to repository. Probably a runtime symbol
lookup for kingcobra causes the freeze. For forwarding messages to KingCobra and VIRGO queues, cpupooling driver
is sufficient which also has the use_as_kingcobra_service clause.

As cpupooling driver has the same crash problem with kernel_accept() when KingCobra has benn enabled, KingCobra
clauses have been commented in both cpupooling and memorypooling drivers. Instead queueing driver has been up-
dated with a kernel service infrastructure to accept connections at port 60000. With this following paths are available
for KingCobra requests:

VIRGO cpupooling or memorypooling ====> VIRGO Queue =====> KingCobra

(or)

141

virgo64-linux-github-code Documentation, Release latest

VIRGO Queue kernel service ===========================> KingCobra

• all kmallocs have been made into GFP_ATOMIC instead of GFP_KERNEL

• moved some kingcobra related header code before kernel_recvmsg()

• some header file changes for set_fs()

This code has been tested with modified code for KingCobra and the standalone kernel service that accepts requests from
telnet directly at port 60000, pushes to virgo_queue and is handled to invoke KingCobra servicerequest kernelspace
function, works (the kernel_recvmsg() crash was most probably due to Read-Only filesystem -errno printed is -30)

New kernel module cloudsync has been added to repository under drivers/virgo that can be used for synchroniza-
tion(lock() and unlock()) necessities in VIRGO cloud. Presently Bakery Algorithm has been implemented.

virgo_bakery.h bakery_lock() has been modified to take 2 parameters - thread_id and number of for loops (1 or 2)

VIRGO bakery algorithm implementation has been rewritten with some bugfixes. Sometimes there are soft lockup
errors due to looping in kernel time durations for which are kernel build configurable.

142Chapter 67. 987. (FEATURE - DONE) VIRGO Kernel Modules and System Calls major rewrite for
3.15.5 kernel - 17 August 2014

CHAPTER

SIXTYEIGHT

INITIAL CODE COMMITS FOR VIRGO EVENTNET KERNEL MODULE
SERVICE:

1.EventNet Kernel Service listens on port 20000

2.It receives eventnet log messages from VIRGO cloud nodes and writes the log messages after parsing into two text
files /var/log/eventnet/EventNetEdges.txt and /var/log/eventnet/EventNetVertices.txt by VFS calls

3.These text files can then be processed by the EventNet implementations in AsFer (python pygraph and C++
boost::graph based)

4.Two new directories virgo/utils and virgo/eventnet have been added.

5.virgo/eventnet has the new VIRGO EventNet kernel module service implementation that listens on port 20000.

6.virgo/utils is the new generic utilities driver that has a virgo_eventnet_log() exported function which connects to
EventNet kernel service and sends the vertex and edge eventnet log messages which are parsed by kernel service and
written to the two text files above.

7.EventNet log messages have two formats:

• Edge message - “eventnet_edgemsg#<id>#<from_event>#<to_event>”

• Vertex message - “eventnet_vertextmsg#<id>-<partakers csv>-<partaker conversations csv>”

8.The utilities driver Module.symvers have to be copied to any driver which are then merged with the symbol files
of the corresponding driver. Target clean has to be commented while building the unified Module.symvers because it
erases symvers carried over earlier.

9.virgo/utils driver can be populated with all necessary utility exported functions that might be needed in other VIRGO
drivers.

10.Calls to virgo_eventnet_log() have to be #ifdef guarded as this is quite network intensive.

Miscellaneous bugfixes,logs and screenshot

• virgo_cloudexec_eventnet.c - eventnet messages parser errors and eventnet_func bugs fixed

• virgo_cloud_eventnet_kernelspace.c - filp_open() args updated due to vfs_write() kernel panics. The vertexmes-
sage vfs_write is done after looping through the vertice textfile and appending the conversation to the existing
vertex.Some more code has to be added.

• VIRGO EventNet build script updated for copying Module.symvers from utils driver for merging with eventnet
Module.symvers during Kbuild

• Other build generated sources and kernel objects

• new testlogs directory with screenshot for edgemsg sent to EventNet kernel service and kern.log with previous
history for vfs_write() panics due to permissions and the logs for working filp_open() fixed version

• vertex message update

143

virgo64-linux-github-code Documentation, Release latest

• fixes for virgo eventnet vertex and edge message text file vfs_write() errors

• kern.logs and screenshots

• Architecture of Key-Value Store in memorypooling (virgo_malloc,virgo_get,virgo_set,virgo_free) has been

uploaded as a diagram at http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/
VIRGOLinuxKernel_KeyValueStore_and_Modules_Interaction.jpg

• new kernel_analytics driver for AsFer <=> VIRGO+USBmd+KingCobra interface has been added.

• virgo_kernel_analytics.conf having csv(s) of key-value pairs of analytics variables is set by AsFer or any other
Machine Learning code. With this VIRGO Linux Kernel is endowed with abilities to dynamically evolve than
being just a platform for user code. Implications are huge - for example, a config variable “MaxNetworkBand-
width=255” set by the ML miner in userspace based on a Perceptron or Logistic Regression executed on network
logs can be read by a kernel module that limits the network traffic to 255Mbps. Thus kernel dynamically changes
behaviour.

• kernel_analytics Driver build script has been added

• code has been added in VIRGO config module to import EXPORTed kernel_analytics config key-pair array

set by Apache Spark (mined from Uncomplicated Fire Wall logs) and manually and write to kern.log.

The VIRGO kernel module drivers are based on kernel 3.15.5. With kernel 4.0.5 kernel which is the latest following
compilation and LD errors occur - this is on cloudfs VIRGO File System driver : - msghdr has to be user_msghdr for
iov and iov_len as there is a segregation of msghdr - modules_install throws an error in scripts/Makefile.modinst while
overwriting already installed module

VIRGO cpupooling driver has been ported to linux kernel 4.0.5 with msghdr changes as mentioned previously with
kern.log for VIRGO cpupooling driver invoked in parameterIsExecutable=2 (kernel module invocation) added in test-
logs

VIRGO Kernel Modules: - memorypooling - cloudfs - utils - config - kernel_analytics - cloudsync - eventnet - queuing
along with cpupooling have been ported to Linux Kernel 4.0.5 - Makefile and header files have been updated wherever
required.

Due to SourceForge Storage Disaster(http://sourceforge.net/blog/sourceforge-infrastructure-and-service-restoration/),
the github replica of VIRGO is urgently updated with some important changes for msg_iter,iovec etc., in 4.0.5 kernel
port specifically for KingCobra and VIRGO Queueing. These have to be committed to SourceForge Krishna_iResearch
repository at http://sourceforge.net/users/ka_shrinivaasan once SourceForge repos are restored. Time to move on to the
manufacturing hub? GitHub ;-) ——————————- 1002. VIRGO Queueing Kernel Module Linux Kernel 4.0.5
port: —————————————————– - msg_iter is used instead of user_msghdr - kvec changed to iovec -
Miscellaneous BUF_SIZE related changes - kern.logs for these have been added to testlogs - Module.symvers has been
recreated with KingCobra Module.symvers from 4.0.5 KingCobra build - clean target commented in build script as it
wipes out Module.symvers - updated .ko and .mod.c ——————————- 1003. KingCobra Module Linux Kernel
4.0.5 port —————————————————– - vfs_write() has a problem in 4.0.5 - the filp_open() args and
flags which were working in 3.15.5 cause a kernel panic implicitly and nothing was written to logs - It took a very long
time to figure out the reason to be vfs_write and filp_open - O_CREAT, O_RDWR and O_LARGEFILE cause the panic
and only O_APPEND is working, but does not do vfs_write(). All other VIRGO Queue + KingCobra functionalities
work viz., enqueueing, workqueue handler invocation, dequeueing, invoking kingcobra kernelspace service request
function from VIRGO queue handler, timestamp, timestamp and IP parser, reply_to_publisher etc., - As mentioned in
Greg Kroah Hartman’s “Driving me nuts”, persistence in Kernel space is a bad idea but still seems to be a necessary
stuff - yet only vfs calls are used which have to be safe - Thus KingCobra has to be in-memory only in 4.0.5 if vfs_write()
doesn’t work - Intriguingly cloudfs filesystems primitives - virgo_cloud_open, virgo_cloud_read, virgo_cloud_write
etc., work perfectly and append to a file. - kern.logs for these have been added to testlogs - Module.symvers has been
recreated for 4.0.5 - updated .ko and .mod.c

in http://sourceforge.net/u/userid-769929/profile/ have been replicated in GitHub also - https:
//github.com/shrinivaasanka excluding some huge logs due to Large File Errors in GitHub.

144 Chapter 68. Initial code commits for VIRGO EventNet kernel module service:

http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGOLinuxKernel_KeyValueStore_and_Modules_Interaction.jpg
http://sourceforge.net/p/virgo-linux/code-0/HEAD/tree/trunk/virgo-docs/VIRGOLinuxKernel_KeyValueStore_and_Modules_Interaction.jpg
http://sourceforge.net/blog/sourceforge-infrastructure-and-service-restoration/
http://sourceforge.net/users/ka_shrinivaasan
http://sourceforge.net/u/userid-769929/profile/
https://github.com/shrinivaasanka
https://github.com/shrinivaasanka

virgo64-linux-github-code Documentation, Release latest

—————————————————————-

VIRGO system calls have been ported to Linux Kernel 4.0.5 with commented gcc option -Wimplicit-function-
declaration, msghdr and iovec changes similar to drivers mentioned in previous commit notes above. But Kernel
4.1.3 has some Makefile and build issues. The NeuronRain codebases in SourceForge and GitHub would henceforth
be mostly and always out-of-sync and not guaranteed to be replicas - might get diversified into different research and
development directions (e.g one codebase might be more focussed on IoT while the other towards enterprise bigdata
analytics integration with kernel and training which is yet to be designed- depend on lot of constraints)

• new .config file added which is created from menuconfig

• drivers/Kconfig has been updated with 4.0.5 drivers/Kconfig for trace event linker errors

Linux Kernel 4.0.5 - KConfig is drivers/ has been updated to resolve RAS driver trace event linker error. RAS was not
included in KConfig earlier. - link-vmlinux.sh has been replaced with 4.0.5 kernel version

145

virgo64-linux-github-code Documentation, Release latest

146 Chapter 68. Initial code commits for VIRGO EventNet kernel module service:

CHAPTER

SIXTYNINE

VIRGO LINUX KERNEL 4.1.5 PORT - RELATED CODE CHANGES -
SOME IMPORTANT NOTES:

• Linux Kernel 4.0.5 build suddenly had a serious root shell drop error in initramfs which was not resolved
by:

– adding rootdelay in grub

– disabling uuid for block devices in grub config

– mounting in read/write mode in recovery mode

– no /dev/mapper related errors

– repeated exits in root shell

– delay before mount of root device in initrd scripts

• mysteriously there were some firmware microcode bundle executions in ieucodetool

• Above showed a serious grub corruption or /boot MBR bug or 4.0.5 VIRGO kernel build problem

• Linux 4.0.x kernels are EOL-ed

• Hence VIRGO is ported to 4.1.5 kernel released few days ago

• Only minimum files have been changed as in commit log for Makefiles and syscall table and headers and a build
script has been added

for 4.1.5:
Changed paths: A buildscript_4.1.5.sh M linux-kernel-extensions/Makefile M linux-kernel-
extensions/arch/x86/syscalls/Makefile M linux-kernel-extensions/arch/x86/syscalls/syscall_32.tbl M linux-
kernel-extensions/drivers/Makefile M linux-kernel-extensions/include/linux/syscalls.h

• Above minimum changes were enough to build an overlay-ed Linux Kernel with VIRGO codebase

Executed the minimum end-end telnet path primitives in Linux kernel 4.1.5 VIRGO code: - cpu virtualization - memory
virtualization - filesystem virtualization (updated filp_open flags) and committed logs and screenshots for the above.

VIRGO queue driver: - Rebuilt Module.symvers - kern.log for telnet request to VIRGO Queue + KingCobra queueing
system in kernelspace

147

virgo64-linux-github-code Documentation, Release latest

148 Chapter 69. VIRGO Linux Kernel 4.1.5 port - related code changes - some important notes:

CHAPTER

SEVENTY

VIRGO LINUX KERNEL 4.1.5 - MEMORY SYSTEM CALLS:

• updated testcases and added logs for syscalls invoked separately(malloc,set,get,free)

• The often observed unpredictable heisen kernel panics occur with 4.1.5 kernel too. The logs are 2.3G and

only grepped output is committed to repository. - virgo_malloc.c has been updated with kstrdup() to copy the buf to
iov.iov_base which was earlier crashing in copy_from_iter() within tcp code. This problem did not happen in 3.15.5
kernel. - But virgo_clone syscall code works without any changes to iov_base as above which does a strcpy()

which is an internal memcpy() though. So what causes this crash in memory system calls alone

is a mystery. - new insmod script has been added to load the VIRGO memory modules as necessary instead of at boot
time. - test_virgo_malloc.c and its Makefile has been updated.

149

virgo64-linux-github-code Documentation, Release latest

150 Chapter 70. VIRGO Linux Kernel 4.1.5 - memory system calls:

CHAPTER

SEVENTYONE

VIRGO LINUX KERNEL 4.1.5 - FILESYSTEM CALLS- TESTCASES
AND LOGS:

• added insmod script for VIRGO filesystem drivers

• test_virgo_filesystem.c has been updated for syscall numbers in 4.1.5 VIRGO kernel

• virgo_fs.c syscalls code has been updated for iov.iov_base kstrdup() - without this there are kernel panics in
copy_from_iter(). kern.log

testlogs have been added, but there are heisen kernel panics. The virgo syscalls are executed but not written to kern.log
due to these crashes. Thus execution logs are missing for VIRGO filesystem syscalls.

151

virgo64-linux-github-code Documentation, Release latest

152 Chapter 71. VIRGO Linux Kernel 4.1.5 - filesystem calls- testcases and logs:

CHAPTER

SEVENTYTWO

VIRGO LINUX KERNEL 4.1.5 FILESYSTEM SYSCALLS:

• Rewrote iov_base code with a separate iovbuf set to iov_base and strcpy()-ing the syscall command to iov_base
similar to VIRGO

memory syscalls - Pleasantly the same iovbuf code that crashes in memory syscalls works for VIRGO FS without
crash.Thus both virgo_clone and virgo_filesystem syscalls work without issues in 4.1.5 and virgo_malloc() works errat-
ically in 4.1.5 which remains as issue. - kern.log for VIRGO FS syscalls and virgofstest text file written by virgo_write()
have been added to repository

153

virgo64-linux-github-code Documentation, Release latest

154 Chapter 72. VIRGO Linux Kernel 4.1.5 filesystem syscalls:

CHAPTER

SEVENTYTHREE

VIRGO LINUX 4.1.5 KERNEL MEMORY SYSCALLS:

• rewrote the iov_base buffer code for all VIRGO memory syscalls by allocating separate iovbuf and copying the
message to it - this just replicates the virgo_clone syscall behaviour which works without any crashes mysteri-
ously.

• did extensive repetitive tests that were frequented by numerous kernel panics and crashes

• The stability of syscalls code with 3.15.5 kernel appears to be completely absent in 4.1.5

• The telnet path works relatively better though

• Difference between virgo_clone and virgo_malloc syscalls despite having same kernel sockets code looks like a
non-trivial bug and a kernel stability issue.

• kernel OOPS traces are quite erratic.

• Makefile path in testcase has been updated

155

virgo64-linux-github-code Documentation, Release latest

156 Chapter 73. VIRGO Linux 4.1.5 kernel memory syscalls:

CHAPTER

SEVENTYFOUR

VIRGO LINUX KERNEL 4.1.5 - MEMORY SYSTEM CALLS:

• replaced copy_to_user() with a memcpy()

• updated the testcase with an example VUID hardcoded.

• str_to_addr2() is done on iov_base instead of buf which was causing NULL parsing

• kern.log with above resolutions and multiple VIRGO memory syscalls tests - malloc,get,set

• With above VIRGO malloc and set syscalls work relatively causing less number of random kernel panics

• return values of memory calls set to 0

• in virgo_get() syscall, memcpy() of iov_base is done to data_out userspace pointer

• kern.log with working logs for syscalls - virgo_malloc(), virgo_set(), virgo_get() but still there are random kernel
panics

• Abridged kern.log for VIRGO Memory System Calls with 4.1.5 Kernel - shows example logs for virgo_malloc(),
virgo_set() and virgo_get()

VIRGO Queue Workqueue handler usermode clause has been updated with 4.1.5 kernel paths and kingcobra in user
mode is enabled for invoking KingCobra Cloud Perfect Forwarding.

• Updated VIRGO Queue kernel binaries and build generated sources

• virgo_queue.h has been modified for call_usermodehelper() - set_ds() and fd_install() have been uncommented
for output redirection. Output redirection works but there are “alloc_fd: slot 1 not NULL!” errors at random
(kern.log in kingcobra testlogs) which seems to be a new feature in 4.1.5 kernel. This did not happen in 3.7.8-
3.15.5 kernels

• kern.log for VIRGO kernel_analytics+config drivers which export the analytics variables from
/etc/virgo_kernel_analytics.conf kernel-wide and print them in config driver has been added to config/testlogs

NeuronRain VIRGO enterprise version 2016.1.10 released.

157

virgo64-linux-github-code Documentation, Release latest

158 Chapter 74. VIRGO Linux Kernel 4.1.5 - Memory System Calls:

CHAPTER

SEVENTYFIVE

1016. (FEATURE - DONE) PYTHON-C++-VIRGOKERNEL AND
PYTHON-C-VIRGOKERNEL BOOST::PYTHON AND CPYTHON

IMPLEMENTATIONS:

• It is a known idiom that Linux Kernel and C++ are not compatible.

• In this commit an important feature to invoke VIRGO Linux Kernel from userspace python libraries via two
alternatives have been added.

• In one alternative, C++ boost::python extensions have been added to encapsulate access to VIRGO memory
system calls - virgo_malloc(), virgo_set(), virgo_get(), virgo_free(). Initial testing reveals that C++ and Kernel
are not too incompatible and all the VIRGO memory system calls work well though initially there were some
errors because of config issues.

• In the other alternative, C Python extensions have been added that replicate boost::python extensions above in C
- C Python with Linux kernel

works exceedingly well compared to boost::python. - This functionality is required when there is a need to set
kernel analytics configuration variables learnt by AsFer Machine Learning Code dynamically without re-reading
/etc/virgo_kernel_analytics.conf. - This completes a major integration step of NeuronRain suite - request travel
roundtrip to-and-fro top level machine-learning C++/python code and rock-bottom C linux kernel - bull tamed ;-). -
This kind of python access to device drivers is available for Graphics Drivers already on linux (GPIO - for accessing de-
vice states) - logs for both C++ and C paths have been added in cpp_boost_python_extensions/ and cpython_extensions.
- top level python scripts to access VIRGO kernel system calls have been added in both directories:

CPython - python cpython_extensions/asferpythonextensions.py C++ Boost::Python - python
cpp_boost_python_extensions/asferpythonextensions.py

• .so, .o files with build commandlines(asferpythonextensions.build.out) for “python setup.py build” have been
added

in build lib and temp directories. - main implementations for C++ and C are in
cpp_boost_python_extensions/asferpythonextensions.cpp and cpython_extensions/asferpythonextensions.c

159

virgo64-linux-github-code Documentation, Release latest

160 Chapter 75. 1016. (FEATURE - DONE) Python-C++-VIRGOKernel and Python-C-VIRGOKernel
boost::python and cpython implementations:

CHAPTER

SEVENTYSIX

1017. COMMITS FOR TELNET/SYSTEM CALL INTERFACE TO VIRGO
CPUPOOLING -> VIRGO QUEUE -> KINGCOBRA

*) This was commented earlier for the past few years due to a serious kernel panic in previous kernel versions - <=
3.15.5 *) In 4.1.5 a deadlock between VIRGO CPUPooling and VIRGO queue driver init was causing following error
in “use_as_kingcobra_service” clause :

• “gave up waiting for virgo_queue init, unknown symbol push_request()”

*) To address this a new boolean flag to selectively enable and disable VIRGO Queue kernel service mode
“virgo_queue_reactor_service_mode” has been added. *) With this flag VIRGO Queue is both a kernel service
driver and a standalone exporter of function symbols - push_request/pop_request *) Incoming request data from tel-
net/virgo_clone() system call into cpupooling kernel service reactor pattern (virgo cpupooling listener loop) is treated
as generic string and handed over to VIRGO queue and KingCobra which publishes it. *) This resolves a long stand-
ing deadlock above between VIRGO cpupooling “use_as_kingcobra_service” clause and VIRGO queue init. *) This
makes virgo_clone() systemcall/telnet both synchronous and asynchronous - requests from telnet client/virgo_clone()
system call can be either synchronous RPC functions executed on a remote cloud node in kernelspace (or) an asyn-
chronous invocation through “use_as_kingcobra_service” clause path to VIRGO Queue driver which enqueues the
data in kernel workqueue and subsequently popped by KingCobra. *) Above saves an additional code implemen-
tation for virgo_queue syscall paths - virgo_clone() handles, based on config selected, incoming data passed to it
either as a remote procedure call or as a data that is pushed to VIRGO Queue/KingCobra pub-sub kernelspace.
—————————————————————————————– Prerequisites: ————– - insmod kingco-
bra_main_kernelspace.ko - insmod virgo_queue.ko compiled with flag virgo_queue_reactor_service_mode=1

(when virgo_queue_reactor_service_mode=0, listens on port 60000 for direct telnet requests)

• insmod virgo_cloud_test_kernelspace.ko

• insmod virgo_cloudexec.ko (listens on port 10000)

VIRGO clone system call/telnet client —> VIRGO cpupooling(compiled with use_as_kingcobra_service=1) ——>
VIRGO Queue kernel service (compiled with virgo_queue_reactor_service_mode=1) —> Linux Workqueue handler
——> KingCobra

• Imported Kernel Analytics variables into CloudFS kernel module - printed in driver init()

• Module.symvers from kernel_analytics has been merged with CloudFS Module.symvers

• Logs for above has been added in cloudfs/test_logs/

• Makefile updated with correct fs path

• Copyleft notices updated

• Kernel Analytics driver exported variables have been imported in CPU virtualization driver

• Module.symvers from kernel_analytics has been merged with Module.symvers in cpupooling

• kern.log for this import added to cpupooling/virgocloudexec/test_logs/

161

virgo64-linux-github-code Documentation, Release latest

• Imported kernel analytics variables into memory virtualization driver init() , exported from kernel_analytics
driver

• build shell script updated

• logs added to test_logs/

• Module.symvers from kernel_analytics has been merged with memory driver Module.symvers

• Makefile updated

• Imported kernel analytics variables into VIRGO Queueing Driver

• logs for this added in test_logs/

• Makefile updated

• Module.symvers from kernel_analytics has been merged with Queueing driver’s Module.symvers

• .ko, .o and build generated sources

162 Chapter 76. 1017. Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO
Queue -> KingCobra

CHAPTER

SEVENTYSEVEN

1022. (FEATURE-DONE) SOCKET BUFFER DEBUG UTILITY
FUNCTION - USES LINUX SKBUFF FACILITY

• In this commit a multipurpose socket buffer debug utility function has been added in utils driver and exported
kernelwide.

• It takes a socket as function argument does the following:

– dereference the socket buffer head of skbuff per-socket transmit data queue

– allocate skbuff with alloc_skb()

– reserve head room with skb_reserve()

– get a pointer to data payload with skb_put()

– memcpy() an example const char* to skbuff data

– Iterate through the linked list of skbuff queue in socket and print headroom and data pointers

– This can be used as a packet sniffer anywhere within VIRGO linux network stack

• Any skb_*() functions can be plugged-in here as deemed necessary.

• kern.log(s) which print the socket internal skbuff data have been added to a new testlogs/ directory

• .cmd files generated by kbuild

skbuff debug function in utils/ driver: (*) Added an if clause to check NULLity of skbuff headroom before doing
skb_alloc() (*) kern.log for this commit has been added testlogs/ (*) Rebuilt kernel objects and sources

• SATURN (saturn.stanford.edu) Program Analysis and Verification software has been

integrated into VIRGO Kernel as a Verification+SoftwareAnalytics subsystem - A sample driver that can invoke an
exported function has been added in drivers - saturn_program_analysis - Detailed document for an example null
pointer analysis usecase has been created in virgo-docs/VIRGO_SATURN_Program_Analysis_Integration.txt
- linux-kernel-extensions/drivers/virgo/saturn_program_analysis/saturn_program_analysis_trees/error.txt
is the error report from SATURN - SATURN generated preproc and trees are
in linux-kernel-extensions/drivers/virgo/saturn_program_analysis/preproc and linux-kernel-
extensions/drivers/virgo/saturn_program_analysis/saturn_program_analysis_trees/

• SATURN analysis databases (.db) for locking, memory and CFG analysis.

• DOT and PNG files for locking, memory and CFG analysis.

• new folder saturn_calypso_files/ has been added in saturn_program_analysis/ with new .clp files virgosat-
urncfg.clp and virgosaturnmemory.clp

• SATURN alias analysis .db files

163

virgo64-linux-github-code Documentation, Release latest

VIRGO CloudFS system calls have been added (invoked by unique number from syscall_32.tbl) for C++ Boost::Python
interface to VIRGO Linux System Calls. Switch clause with a boolean flag has been introduced to select either VIRGO
memory or filesystem calls. kern.log and CloudFS textfile Logs for VIRGO memory and filesystem invocations from
AsFer python have been committed to testlogs/

Python CAPI interface to NEURONRAIN VIRGO Linux System Calls has been updated to include File System open,
read, write primitives also. Rebuilt extension binaries, kern.logs and example appended text file have been committed
to testlogs/. This is exactly similar to commits done for Boost::Python C++ interface. Switch clause has been added to
select memory or filesystem VIRGO syscalls.

Initial Documentation for Smatch and Coccinelle kernel static analyzers executed on VIRGO Linux kernel - to be
updated periodically with further analysis.

1. GFP_KERNEL has been replaced with GFP_ATOMIC flags in kmem allocations.

2. NULL checks have been introduced in lot of places involving strcpy, strcat, strcmp etc., to circumvent buffer over-
flows. 3. Though this has stabilized the driver to some extent, still there are OOPS in unrelated places deep with in
kernel where paging datastructures are accessed - kmalloc somehow corrupts paging 4. OOPS are debugged via gdb
as:

4.1 gdb ./vmlinux /proc/kcore or 4.2 gdb <loadable_kernel_module>.o

followed by
4.3 l *(address+offset in OOPS dump)

5. kern.log(s) for the above have been committed in tar.gz format and have numerous OOPS occurred during repetitive
telnet and syscall invocation(boost::python C++) invocations of virgo memory system calls. 6. Paging related OOPS
look like an offshoot of set_fs() encompassing the filp_open VFS calls.

Further analysis on direct VIRGO memory cache primitives telnet invocation - problems are similar to Boost::Python
AsFer VIRGO system calls invocations.

Analysis of VIRGO memory cache primitives reveal more inconsistencies in cacheline flushes between CPU and GPU.

*) moved virgoeventnetclient_driver_build.sh to virgoutils_driver_build.sh in utils/ driver *) Updated VIRGO Linux
Build Steps for 4.10.3 *) New repository has been created for 64-bit VIRGO Linux kernel based on 4.10.3 mainline
kernel in GitHub and imported in SourceForge:

https://github.com/shrinivaasanka/virgo64-linux-github-code https://sourceforge.net/p/virgo64-linux/

*) Though it could have been branched off from existing VIRGO repository (32-bit) which is based on 4.1.5 mainline
kernel, creating a separate repository for 64-bit 4.10.3 VIRGO kernel code was simpler because:

• there have been directory path changes for syscall entries in 4.10.3 and some other KBuild entities

• Some script changes done for 4.1.5 in modpost and vmlinux phases are not required

• having two VIRGO branches one with 4.1.5 code and 32-bit driver .ko binaries and other with 4.10.3 code and
64-bit driver .ko

binaries could be unmanageable and commits could go into wrong branch

• 4.10.3 64-bit VIRGO kernel build is still in experimental phase and it is not known if 64-bit 4.10.3 build
solves earlier panic

problems in 4.1.5

• If necessary one of these two repositories could be made branch of the other later

*) Prima facie, 64 bit kernel is quite finicky and importunate compared to 32 bit and 64 bit specific idiosyncrasies are
to the fore. *) During the past 1 week, quite a few variants of kernel and drivers builds were tried with KASAN enabled
and without KASAN (Google Kernel Address Sanitizer) *) KASAN shows quite huge number of user memory accesses
which later translate to panics. *) Most nagging of these was kernel_recvmsg() panic. *) Added and updated skbuff
socket debug utility driver with a new debug function and to print more fields of skbuff *) KASAN was complaining

164 Chapter 77. 1022. (FEATURE-DONE) Socket Buffer Debug Utility Function - uses linux skbuff
facility

https://github.com/shrinivaasanka/virgo64-linux-github-code
https://sourceforge.net/p/virgo64-linux/

virgo64-linux-github-code Documentation, Release latest

about _asan_load8 (loading 8 userspace bytes) *) All erroneous return data types in VIRGO mempool ops structure have
been corrected in VIRGO headers *) all type casts have been sanitized *) Changed all kernel stack allocations to kernel
heap kzallocs *) This later caused a crash in inet_sendmsg in kernel_sendmsg() *) gdb64 disassemble showed a trap-
ping instruction: testb $0x6,0x91(%14) with corresponding source line: sg = !!(sk->sk_route_caps & NETIF_F_SG)
in tcp_sendmsg() (net/ipv4/tcp.c) *) changed kernel_sendmsg() to sock->ops->sendmsg() *) These commits are still
ongoing analysis only. *) Screenshots for these have been added to debug-info/

*) Previous commit was crashing inside tcp_sendmsg() *) GDB64 disassembly shows NULL values for register R12
which is added with an offset 91 and is an operand in testb *) Protected all kernel_sendmsg() and kernel_recvmsg() in
both system calls side and drivers side with

oldfs=get_fs(), set_ds(KERNEL_DS) and set_fs(oldfs)

blocks without which there are random kernel_sendmsg and kernel_recvmsg hangs *) Removed init_net and
sock_create_kern usage everywhere and replaced them with sock_create calls *) Tried MSG_FASTOPEN flags but
it does not help much in resolving tcp_sendmsg() NULL pointer dereference issue. MSG_FASTOPEN just speedsup
the message delivery by piggybacking the message payload before complete handshake is established(SYN, SYN-
ACK, SYN-ACK-ACK) in SYN-ACK itself. But eventually it has to be enabled as fast open is becoming a standard.
*) Kasan reports have been enabled. *) Added more debug code in skbuff debug utility functions in utils driver to
check if sk->prot is a problem. *) Replaced kernel_sendmsg with a sock->ops->sendmsg() in mempool sendto func-
tion which otherwise crashes in tcp_sendmsg(). *) With sock->ops->sendmsg() systemcalls <—–> drivers two-way
request-reply works but still there are random -32 (broken pipe) and -104 (Connection Reset by Peer) errors *) Logs
for working sys_virgo_malloc() call with correctly returned VIRGO Unique ID for memory allocated has been com-
mitted to test_logs in virgocloudexecmempool *) sock->ops->sendmsg() in mempool driver sendto function requires
a MSG_NOSIGNAL flag which prevents SIGPIPE signal though not fully *) Reason for random broken pipe and
connection reset by peer errors in mempool sendto is unknown. Both sides have connections open and there is no
noticeable traffic. *) While socket communications in 32 bit VIRGO kernel syscalls and drivers work with no issues,
why 64-bit has so many hurdles is puzzling. Reasons could be 64 bit address alignment issues, 64 bit specific #ifdefs
in kernel code flow, major changes from 4.1.5 to 4.10.3 kernels etc., *) NULL values for register R12 indicate already
freed skbuff data which are accessed/double-freed. Kernel TCP engine has a circular linked list of skbuff write queue
which is iterated in skbuff utils driver debug functions. *) TCP engine clones the head data of skbuff queue, transmits
it and waits for an ACK or timeout. Data is freed only if ACK or timeout occurs. And head of the queue is advanced to
next element in write queue and this continues till write queue is empty waiting for more messages. *) If ACK is not
received, head data is cloned again and retransmitted by sequence number flow control.

*) kernel_sendmsg() has been replaced with sock->ops->sendmsg() because kernel_sendmsg() is quite erratic in 4.10.3
64 bit *) There were connection reset errors in system calls side for virgo_malloc/. This was probably because sock-
>ops->sendmsg() requires MSG_DONTWAIT and MSG_NOSIGNAL flags and sendmsg does not block. *) sock re-
lease happens and virgo_malloc syscalls receives -104 error *) Temporarily sock_release has been commented. Rather
socket timeout should be relied upon which should do automatic release of socket resources *) Similar flags have been
applied in virgo_malloc syscalls too. *) Logs with above changes do not have reset errors as earlier. *) virgo set/get
still crashes because 64 bit id is truncated which would require data type changes for 64 bit *) test_virgo_malloc test
case has been rebuilt with -m64 flag for invocation of 64 bit syscalls by numeric ids

*) There is something seriously wrong with 4.10.3 kernel sockets in 64 bit build VIRGO send/recv messages and even
accept/listen too. *) All kernel socket functionalities which work well in 4.1.5 32 bit VIRGO , have random hangs,
panics in 4.10.3 VIRGO64 build mostly in inet_recvmsg/sendmsg code path *) KASAN shows attempts to access user
address which occurs despite set_fs(KERNEL_DS) *) Crash stack is similar to previous crashes in tcp_sendmsg()
*) Tried different address and protocol families for kernel socket accept (TCP,UDP,RAW sockets) *) With Datagram
sockets, kernel_listen() mysteriously fails with -95 error in kernel_bind(operation not supported) *) With RAW sockets,
kernel_listen() fails with -93 error for AF_PACKET (protocol not supported) *) tcpdump pcap sniffer doesn’t show
anything unruly. *) This could either be a problem with kernel build (unlikely), Kbuild .config or could have extraneous
reasons. But .config for 4.1.5 and 4.10.3 are similar. *) Only major difference between 4.10.3 and 4.1.5 is init_net
added in sock_create_kern() internally *) datatype of VIRGO Unique ID has been changed to unsigned long long
(_u64) *) tried with INADDR_LOOPBACK in place of INADDR_ANY *) also tried with disabled multi(homing) in
/etc/hosts.conf *) Above random kernel socket hangs occur across all VIRGO system calls and drivers transport. *)

165

virgo64-linux-github-code Documentation, Release latest

Utils kernel socket client to EventNet kernel service also has similar inet_recvmsg/inet_sendmsg panic problems.

) EventNet driver works in 64 bit VIRGO Linux *) An example eventnet logging with utils virgo_eventnet_log() works
now without tcp_sendmsg() related stalls in previous builds *) Return Datatypes for all EventNet operations have been
sanitized (struct socket was returned as int in 32 build and reinterpret-cast to struct socket*. This reinterpret cast does
not work in 64 bit) in eventnet header. *) utils eventnet log in init() has been updated with a meaningful edge update
message *) kern.log for this has been added to eventnet/testlogs

) telnet requests to VIRGO memory(kernelmemcache), cpu and filesystem modules work after resolving issues with
return value types *) commented le32_to_cpu() and print_buffer() which was suppressing lot of log messages. *)
VIRGO <driver> ops structures have been updated with correct datatypes. *) reinterpret cast of struct socket to int
has been completely done away with which could have caused 64bit specific panics *) lot of kern.log(s) and screen
captures have been added for telnet requests in testlogs/ of respective <driver> directory *) Prima facie 64bit telnet
requests to VIRGO module listeners are relatively stabler than 32bit *) Previous code changes should be relevant to 32
bit VIRGO kernel too. *) tcp_sendmsg()/tcp_recvmsg() related hangs could be mostly related to corrupted skbuff queue
within each socket. *) This is because replacing kernel_<send/recv>msg() with sock_<send/recv>msg() causes return
value to be 0 while socket release crashes within skbuff related kernel functions. *) To make socket state immutable,
in VIRGO memory driver header files, client socket has been declared as const type.

) Rebuilt KingCobra 64bit kernel module *) telnet requests to VIRGO64 Queueing module listener driver are serviced
by KingCobra servicerequest *) Request_Reply queue persisted for this VIRGO Queue + KingCobra routing has been
committed to c-src/testlogs. *) kern.log for this routing has been committed in VIRGO64 queueing directory *) Similar
to other drivers struct socket reinterpret cast to int has been removed and has been made const in queuesvc kernel thread

*) All testcases have been rebuilt *) VIRGO kernel memcache,cpu and filesystem system calls have been updated
with set_fs()/get_fs() blocks for kernel_sendmsg() and kernel_recvmsg() *) Of these virgo_clone() system call testcase
(test_virgo_clone) works flawlessly and there are no tcp_sendmsg()/tcp_recvmsg() related kernel panics. *) VIRGO
memcache and filesystem system call testcases have usual tcp_sendmsg()/tcp_recvmsg() despite the kernel socket code
being similar to VIRGO clone system call *) Logs for VIRGO clone system call to CPU kernel driver module have
been committed to virgo_clone/test/testlogs

*) Changed iovec in virgo_clone.c to kvec *) test_virgo_filesystem.c and test_virgo_malloc.c VIRGO system calls
testcases have been changed with some additional printf(s) in userspace *) virgo_malloc.c has been updated with
BUF_SIZE in iov_len and memset to zero initialize the buffer. tcp_sendmsg()/tcp_recvmsg() pair were getting stuck
in copy_from_iter_full() memcpy with a NULL Dereference. memcpy() was reading past the buffer bound caus-
ing an overrun. strlen() didnot work for iov_len. *) virgo_fs.c virgo_write() memcpy has been changed back to
copy_from_user() thereby restoring status quo ante (commented more than 3 years ago because of a kernel panic
in older versions of 32 bit VIRGO kernel) *) Logs for VIRGO kmemcache and filesystem system calls have been com-
mitted to respective system call directories. *) With this all VIRGO64 functionalities work in both telnet and system
calls requests routes end-to-end from clients to kernel modules with kernel sockets issues resolved fully. *) Major find-
ings are: - VIRGO 4.10.3 64 bit kernel is very much stable compared to 32 bit 4.1.5 kernel - there are no i915 related
errors which happened in VIRGO 32 bit 4.1.5 kernel - Repetitive telnet and system calls requests to VIRGO modules
are stable and there are no kernel panics like 4.1.5 32 bit kernel. - Google Kernel Address Sanitizer is quite helpful
in finding stack overruns, null derefs, user memory accesses etc., - 64 bit kernel is visibly faster than 32 bit. - Virgo
Unique ID is now extended to 2^64 with unsigned long long.

*) Changed return value of virgo_cloud_free_kernelspace() to a string literal “kernel memory freed” *) Logs for
VIRGO64 memory and filesystem calls to memory and filesystem drivers requests routing have been committed in
test_logs of both driver directories

Residual logs for VIRGO 64 bit 4.10.3 kernel committed.

*) Changed LOOPBACK to INADDR_ANY for VIRGO64 kernel memcache listen port *) All VIRGO64 RPC, kernel
memcache, cloud filesystem primitives have been retested *) VIRGO64 mempool binaries have been rebuilt

(*) VIRGO64 cloudfs driver has been rebuilt after changing virgofstest.txt file creation filp_open() call (*) Screenshots
and logs for VIRGO64 Clone, Kernel MemCache and Cloud FS SystemCalls-Drivers interaction, socket transport
debug messages and Kernel Address Sanitizer have been committed in virgo-docs/systemcalls_drivers

166 Chapter 77. 1022. (FEATURE-DONE) Socket Buffer Debug Utility Function - uses linux skbuff
facility

virgo64-linux-github-code Documentation, Release latest

(*) Recently released mainline kernel version 4.13 integrates SSL/TLS into kernelspace- KTLS - for the first time.
(*) KTLS is a standalone kernel module af_ktls (https://github.com/ktls) implemented by RedHat and Facebook for
optimizing SSL handshake within kernelspace itself and reduce userspace-kernelspace switches. (*) sendfile() system
call in linux which is used for file transmission (combining read+write) from one fd to another uses this KTLS opti-
mization in kernelspace in af_ktls codebase (af_ktls tool) (*) VIRGO Linux kernel fork-off requires this kernelspace
TLS functionality to fully secure traffic from system call client to remote

cloud node’s kernel module listeners

(*) Hence VIRGO64 linux kernel mainline base is urgently upgraded from 4.10.3 to 4.13.3 (*) All system
calls and kernel module code in VIRGO64 now have #include(s) for tls.h and invoke kernel_setsockopt() on
the client-server kernelspace sockets for SOL_TLS and TLS_TX options and have been rebuilt. (*) VIRGO64
RPC clone/kmemcache/cloudfs system calls to kernel module listeners have been tested with this new KTLS
socket option, on rebuilt VIRGO64 kernel overlay-ed on 4.13.3 64-bit linux kernel (*) 4.13 mainline kernel
also has SMB CIFS bug fixes for recent malware attacks (WannaCry etc.,) which further ensures security of
VIRGO64 linux fork-off kernelspace traffic. (*) New buildscript for 4.13.3 linux kernel has been committed
(*) testlogs for VIRGO64 system calls and driver listeners KTLS transport have been committed in virgo-
docs/systemcalls_drivers/kern.log.VIRGO64_SystemCalls_Drivers.4.13.3_KTLS_kernelsockets.22September2017
(*) After this upgrade, complete system calls to driver listener traffic is SSL enabled implicitly. (*) Updated kernel
object files for 4.13.3 build are part of this commit.

Updated init.h and syscalls.h headers for virgo system calls

(*) VIRGO64 CPU/KMemCache/CloudFS system calls have been invoked by userspace testcases and all primitives
work after 4.13.3 KTLS upgrade (*) Some small modifications to system calls code have been made and rebuilt to
remove redundant iovbuf variables in printk(s) (*) test_virgo_filesystem.c testcase has been updated and rebuilt (*)
kern.log(s) for CPU/KMemCache/CloudFS systemcalls to driver listeners invocations have been committed to respec-
tive system call directories (*) virgofstest.txt written to by virgo_write() has also been committed. But a weird behaviour
is still observed similar to previous linux kernel versions (4.1.5 and 4.10.3): Repetitive invocations are required to flush
the filesystem buffer to force write the file. (*) No DRM GEM i915 panics are observed and stability of VIRGO64 +
4.13.3 linux kernel is more or equal to VIRGO64 + 4.10.3 linux kernel

(*) New branch VIRGO_KTLS has been created after previous commit on 25 September 2017 and all 5 commits after
25 September 2017 till 28 September 2017 have been branched to VIRGO_KTLS (which has the #ifdef for crypto_info,
reads from /etc/virgo_ktls.conf and a new ktls driver module) (*) Following are the commit hashes and commandlines
in GitHub and SourceForge:

git branch -b VIRGO_KTLS git branch master git rebase -i <SHA1_on_25September2017> git rebase
–continue git commit –amend git push –force

1960 ls 1961 git checkout VIRGO_KTLS 1962 git push origin VIRGO_KTLS 1963 git status 1964 git check-
out 1965 git checkout -b 1966 git branch 1967 git branch master 1968 git branch -h 1969 git branch
1970 git checkout master 1975 git checkout -b 1976 git checkout -b VIRGO_KTLS 1979 git push origin
VIRGO_KTLS 1990 git rebase -i bb661e908cba2a5357414e89166f29086a28bdf0 1991 git status 1992 git rebase -
i bb661e908cba2a5357414e89166f29086a28bdf0 1996 git rebase –continue 1997 git commit –amend 2019 git re-
base -i bb661e908cba2a5357414e89166f29086a28bdf0 2029 git rebase –continue 2037 git push –force 2091 git re-
base -i bb661e908cba2a5357414e89166f29086a28bdf0 2092 git rebase –continue 2093 git commit –amend 2094 git
push –force 2110 git branch 2111 git branch master 2112 git checkout master 2113 git branch 2114 git rebase -i
e76b4089633223f610fddc0e0eaff8c2cef8b9f1 2115 git commit –amend 2116 git rebase –continue 2117 git push –force
———————————————————————————————————– KTLS in 4.13.3 has support
for only private symmetric encryption. It does not support Public Key Encryption yet. Since this might take a while
mainstream VIRGO64 code might change a lot for other features. Therefore, VIRGO_KTLS specific crypto_info code
has been branched off and would parallelly evolve if PKI features are available on KTLS in next versions of Linux
kernel.

kern.log(s) for VIRGO64 systemcalls-driver 4.13.3 64-bit upgrade tests on master branch after reversal and rebase of
master HEAD yesterday for branching to VIRGO_KTLS. There is a weird General Protection Fault in intel atomic

167

https://github.com/ktls

virgo64-linux-github-code Documentation, Release latest

commit work not seen thus far. Also -32 and -107 socket errors are frequent after reversal though code remains same.
But all virgo clone/kmemcache/fs systemcalls functionalities work in invocations after GPF.

(*) Utils Generic Socket Client function virgo_eventnet_log() for EventNet kernel module listener was repeatedly fail-
ing in kernel_connect() emitting -32 and -107 errors. (*) kernel_connect() was guarded by set_fs() and get_fs() memory
segment routines to prevent any memory corruption. After this stack out-of-bounds error was reported by kernel ad-
dress sanitizer in tcp_sendmsg() and copy_from_iter_full() implying the message buffer was not properly read within
kernel. (*) After replacing strlen(buf) by BUF_SIZE in msg flags before kernel_connect() stack out-of-bounds error
has been remedied and Utils to EventNet virgo_eventnet_log() doesn’t crash in tcp_sendmsg() (*) kern.log for this has
been committed in drivers/virgo/utils/testlogs/ (*) Both eventnet and utils drivers have been rebuilt

(*) kernel_setsockopt() for KTLS has been commented in all system calls and drivers because KTLS functionality has
been branched to VIRGO_KTLS (*) In virgo_clone.c, iov.iov_len has been set to BUF_SIZE (*) kernel_connect() has
been guarded by set_fs()/get_ds() in VIRGO64 system call clients (*) test_virgo_malloc.c testcase has been updated
(*) There was a weird problem in in4_pton(): sin_addr.saddr was not set correctly from string IP address and this
was randomly occurring only in virgo_set() (*) in4_pton() is implemented in net/core/utils.c and reads the string IP
address digits and sums up the ASCII values to hex representation of the address. Bitwise operations within this
functions were failing randomly. (*) Repeated builds were done trying different possible fixes but didn’t work e.g casting
saddr to (u8*) (*) There is an alternative in_aton() function which takes only String IP address and returns address
as __be32 (*) After in_aton() in virgo_set() random faulty address conversion does not occur - in_aton() is differently
implemented compared to in4_pton() (*) msg_hdr has been initialized to NULL in virgo_set() (*) Lot of debug printk()s
have been added (*) kern.log (.tar.gz) for RPC clone/KMemCache/Filesystem systemcalls-driver has been committed to
virgo-docs/systemcalls_drivers (*) VIRGO Linux build steps have been updated for example commandlines to overlay
mainline kernel tree by VIRGO64 source

commit 4e6681ade4ddbf1bed17f7c115b59a5ebf884256 Author: K.Srinivasan <ka.shrinivaasan@gmail.com> Date:
Fri Oct 6 11:36:15 2017 +0530

(*) telnet client connection to VIRGO64 Queue and a subsequent workqueue routing (pub/sub) to KingCobra64 has
been tested on 4.13.3 (*) TX_TLS socket option has not been disabled and is a no-op because it has no effect on the
socket. (*) REQUEST_REPLY.queue for this routing from VIRGO64 queue and persisted by KingCobra64 has been
committed to KingCobra64 repositories in GitHub and SourceForge

commit d4e95b58474838d65da9c69944c6287acbdfe72c Author: K.Srinivasan <ka.shrinivaasan@gmail.com> Date:
Fri Oct 6 11:05:21 2017 +0530

(*) VIRGO64 Telnet Clients to Driver listeners invocations have been tested by telnet connections (*) Master branches
in SourceForge and GitHub VIRGO64 do not have KTLS provisions. Only VIRGO_KTLS branch has crypto_info and
setsockopt()

for TX_TLS for kernel sockets.

(*) It has been already mentioned in NeuronRain Documentation in https://neuronrain-documentation.readthedocs.io/
en/latest/ on securing VIRGO cloud nodes in the absence of KTLS - most obvious solution is to install VPN client-
servers in all nodes which create Virtual IPs

on a secure tunnel (e.g OpenVPN).

(*) VIRGO64 system call clients and driver listeners should read these Virtual IPs from /etc/virgo_client.conf
and /etc/virgo_cloud.conf

and cloud traffic is confined to the VPN tunnel.

(*) VIRGO64 systemcalls have been invoked from unit test cases (test_<system_call>) in a loop of few hundred it-
erations (*) No DRM GEM i915 panics or random crashes are observed and stability is good (*) This is probably
the first loop iterative testing of VIRGO system calls and drivers. (*) Kernel logs for this have been committed to
virgo-docs/systemcalls_drivers directory. (*) Note on concurrency: Presently mutexing within system calls have been
commented because in past linux versions mutexing within kernel was causing strange panic issues. As a design choice
and feature-stability tradeoff (stability is more important than introducing additional code) mutexing has been lifted up
to userspace. It is upto the user applications invoking the system calls to synchronize multiple user threads invoking

168 Chapter 77. 1022. (FEATURE-DONE) Socket Buffer Debug Utility Function - uses linux skbuff
facility

mailto:ka.shrinivaasan@gmail.com
mailto:ka.shrinivaasan@gmail.com
https://neuronrain-documentation.readthedocs.io/en/latest/
https://neuronrain-documentation.readthedocs.io/en/latest/

virgo64-linux-github-code Documentation, Release latest

VIRGO64 system calls i.e VIRGO64 system calls are not re-entrant. This would allow just one kernel thread (mapped
1:1 to a user thread)

to execute in kernel space. Mostly this is relevant only to kmemcache system calls which have global in-
kernel-memory address translation tables and next_id variable. VIRGO clone/filesystem calls do not have
global in-kernel-memory datastructures.

(*) VIRGO64 systemcalls are invoked in a function which is called from 2 processes concurrently (*) Mutexes between
the processes are PTHREAD_PROCESS_SHARED attribute set. (*) test_virgo_malloc.c unit testcase has been en-
hanced to fork() a process and invoke systemcalls in a function for 100 iterations each (*) Logs for the Virgo Unique
IDs malloc/set/get/free in the systemcalls side and kern.logs for the drivers have been committed to test/testlogs/ (*)
No DRM GEM i915 crashes were observed (*) test_virgo_malloc.c testcase demonstrates the coarse grained critical
section lock/unlock for kmemcache systemcalls and is a template that should be followed for any userspace application.

(#) Presently kernel analytics config have to be read from a file storage. This is a huge performance bottleneck when
frequency of analytics variables written to is realtime. For example autonomous vehicles/drones write gigabytes of
navigation data in few minutes. (#) Because of this /etc/virgo_kernel_analytics.conf grows tremendously. File I/O in
linux kernel module is also fragile and not recommended. (#) Previous latency limitations necessitate an alternative high
performance analytics config variable read algorithm (#) This commit introduces new streaming kernel analytics config
reading function - It connects to a kernel analytics streaming IP address on hardcoded port 64000 and reads analytics
key-value pairs in an infinite loop. (#) These read key-value pairs are stored in a kernel global ring buffer exported
symbol (by modulus operator). Because of circular buffer, older kernel analytics variables are overwritten repetitively.
(#) kernel socket message flags are set to MSG_MORE | MSG_FASTOPEN | MSG_NOSIGNAL for high response
time. MSG_FASTOPEN works with no panic in 4.13.3 64-bit which was a problem in previous kernel versions. (#)
kern.log for this has been committed to kernel_analytics/testlogs/ (#) include/linux/virgo_kernel_analytics.h header file
has been updated for declarations related to streaming analytics. (#) Webserver used for this is netcat started on port
64000 as:

nc -l 64000 >k1=v1 >k2=v2 . . .

(1) This is sequel to previous commit for Stream reading Kernel Analytics variables over a network socket

(2) read_streaming_virgo_kernel_analytics_conf() function is invoked in a separate kernel thread because module
init is blocked

(#) VIRGO64 config module was loaded and exported kernel analytics variables read over socket by previous spin-off
kernel thread are imported in VIRGO64 config init. (#) kern.log for this has been committed to testlogs/ (#) Pre-
requisite: Webservice serving kernel_analytics variables must be started before kernel_analytics module is loaded in
kernel. (#) By this a minimum facility for live reading analytics anywhere on cloud (it can be userspace or kernelspace)
and exporting them to modules on a local cloud node kernel has been achieved - ideal for cloud-analytics-driven IoT

(1) VIRGO64 System Calls to Drivers invocations on 4.13.3 kernel have been executed after enabling streaming
kernel analytics

(2) VIRGO64 RPC/KMemCache/CloudFS Drivers import, streamed variable-value pairs exported from ker-
nel_analytics read from netcat webservice

(3) VIRGO64 KMemCache testcase has 2 concurrent processes invoking kememcache systemcalls in a loop.

(4) kern.log for this has been committed to virgo-docs/systemcalls_drivers

(5) virgofstest.txt written by CloudFS systemcalls-drivers invocation is also committed to virgo-
docs/systemcalls_drivers

1. VIRGO64 system calls to drivers interactions so far have been tested only on dual core 64 bit architecture.

2. In quad core 64 bit there have been random -32,-107, -101 errors in kernel_connect() from system call clients to
driver services in almost all three types of VIRGO64 system calls - clone/kmemcache/filesystem - to respective drivers
3. These errors do not occur if following in4_pton() invocation is changed to in_aton() before kernel_connect() in
system call clients and kernel is rebuilt with following change before kernel_connect():

169

virgo64-linux-github-code Documentation, Release latest

/in4_pton(vaddr->hstprt->hostip, strlen(vaddr->hstprt->hostip), (u8)&sin.sin_addr.s_addr,
‘0’,NULL);*/

sin.sin_addr.s_addr=in_aton(vaddr->hstprt->hostip);

4. Since this problem occurs erratically and only on quadcore 64-bit and reasons for these random -32,-101,-107
errors are still unknown, no commit for this code change has been made and this issue is left as documented
known issue.

5. Most likely the u8* cast causes client socket address corruption.

6. Because of random -32,-101,-107 errors, in quadcore, system calls sometimes do not transmit client side com-
mandline primitive strings to driver services.

1. Two analytics usecases mentioned in NeuronRainUsecases.txt in NeuronRain AsFer asfer-docs/ have been illus-
trated in this commit by 2 example drivers for PXRC Drone controller Driver and UVC Video WebCam Driver. 2.
PXRC Phoenix RC flight controller is part of linux kernel from 4.17 and kernel major version has been bumped
to 5.x.x recently. 3. Linux kernel 5.1.4 has been built by a new build script - buildscript_5.1.4.sh. 4. Linux
kernel 5.1.4 has recent versions of PXRC drone controller driver and a UVC video webcam driver (http://www.
ideasonboard.org/uvc/faq/) 5. New directory linux-kernel-5.1.4-extensions/ has been created for VIRGO64 code
built on kernel mainline version 5.1.4. No branch is created for version 5.1.4 because pxrc driver is part of ker-
nel only from 4.17 while code in linux-kernel-extensions/ is based on kernel 4.13.3 for dual core 64-bit architec-
ture. 6. New VIRGO64 build on 5.1.4 kernel is necessary only for PXRC, UVC and kernel_analytics drivers while
other VIRGO64 drivers have not been ported to 5.1.4 and are still on 4.13.3 kernel. 7. Two drivers for PXRC and
UVC Webcam in 5.1.4 have been committed under linux-kernel-5.1.4-extensions/drivers/media/usb/uvc and linux-
kernel-5.1.4-extensions/drivers/input/joystick 8. VIRGO64 kernel_analytics driver for 5.1.4 has been committed un-
der linux-kernel-5.1.4-extensions/drivers/virgo/kernel_analytics. 9. Porting VIRGO64 kernel_analytics driver from
4.13.3 to 5.1.4 required changing vfs_read() of /etc/virgo_kernel_analytics.conf to kernel_read() in config file read.
10. Drivers code for PXRC is in drivers/input/joystick/pxrc.c has been instrumented with few printk() statements that
print the virgo_kernel_analytics_conf array variable-value pairs exported by VIRGO64 kernel_analytics driver. Ker-
nel analytics variables are imported by #include of virgo_config.h 11. Drivers code for UVC Video WebCam is in
drivers/media/usb/uvc. File drivers/media/usb/uvc/uvc_video.c has been instrumented with lot of uvc_trace() state-
ments which print kernel_analytics driver exported analytics variable “match” and its boolean value. Kernel analytics
variables are imported by #include of virgo_config.h. Variable “match” has been set to “True” assuming a face recog-
nition or retinal scan match by userspace analytics and /etc/virgo_kernel_analytics.conf has been written to. 12. UVC
Video WebCam traces are enabled by:

echo 0xffff > /sys/module/uvcvideo/parameters/trace

13. Example kern.log(s) for PXRC and UVC drivers are committed under
drivers/input/joystick/testlogs/kern.log.pxrc.28May2019 and drivers/media/usb/uvc/kern.log.uvcvideo.28May2019
which show UVC traces printing the imported kernel analytics variable “match=True” and PXRC driver regis-
tration. No other PXRC traces are printed because of lack of drones and drone licensing dependency

14. Both UVC and PXRC drivers, VIRGO64 kernel_analytics driver and linux kernel 5.1.4 have been built on quad-
core 64-bit architecture.

15. This example import of VIRGO64 kernel analytics variables into PXRC drone and UVC webcam drivers demon-
strate passing of userspace analytics information to kernel for suitable action.

16. Driver build shell scripts have been committed to UVC and PXRC driver directories.

1. Existing workqueue underneath VIRGO64 queueing and requests routed by it to KingCobra64 messaging are old
legacy workqueues which have been revamped to Concurrent Managed Workqueue which supports concurrent mes-
saging and lot of other options in queue creation. 2. create_workqueue() in VIRGO64 Queueing has been changed
to alloc_workqueue() of Concurrent Managed Workqueue. 3. VIRGO64 Queueing request routing to KingCobra64
messaging has been tested with CMWQ and queueing log and kingcobra64 Request-Reply Queue have been committed
to respective testlogs of the drivers 4. reading from stream has been disabled in virgo_kernel_analytics.h 5. Reference

170 Chapter 77. 1022. (FEATURE-DONE) Socket Buffer Debug Utility Function - uses linux skbuff
facility

http://www.ideasonboard.org/uvc/faq/
http://www.ideasonboard.org/uvc/faq/

virgo64-linux-github-code Documentation, Release latest

- CMWQ documentation - https://www.kernel.org/doc/html/v4.11/core-api/workqueue.html 6. Byzantine Fault Tol-
erance in KingCobra64 persisted queue can be made available by performant CMWQ and routing to the Replicas of
REQUEST_REPLY.queue by any of the practical BFT protocols available. 7. Most important application of CMWQ
based VIRGO64-KingCobra64 is in the context of kernelspace hardware messaging in IoT,Drones and other analytics
driven embedded systems. 8. An example usecase which is a mix of sync and async I/O in kernelspace:

(*) Analytics Variables computed by userspace machine learning are read over socket stream by ker-
nel_analytics driver and

exported kernelwide
(*) Some interested Drone driver in kernel (example PXRC) reads the analytics variables synchronously and
sends reply messages asynchronously to VIRGO64 Queuing driver over kernel sockets. (*) VIRGO Queuing
routes the queued messages to KingCobra64 driver

Srinivasan Kannan (alias) Ka.Shrinivaasan (alias) Shrinivas Kannan http://sites.google.com/site/kuja27

171

https://www.kernel.org/doc/html/v4.11/core-api/workqueue.html
http://sites.google.com/site/kuja27

	888. CPU pooling or cloud ability in a system call:
	Experimental Prototype
	VIRGO - loadbalancer to get the host:ip of the least loaded node
	889. Loadbalancer option 1 - Centralized loadbalancer registry that tracks load:
	890. Loadbalancer option 2 - Linux Psuedorandom number generator based load balancer(experimental) instead of centralized registry that tracks load:
	891. Implemented VIRGO Linux components (as on 7 March 2016)
	VIRGO Features (list is quite dynamic and might be rewritten depending on feasibility - longterm with no deadline)

	895.1 Schematic Diagram:
	based on if-else clause of the kernel_analytics variable i.e remote_client invokes virgo_clone() with function argument “lights on” which is routed to another cloud node. The recipient cloud node “learns” from AsFer kernel_analytics that Voltage is low or Battery is low from logs and decides to switch in high beam or low beam.
	Example scenario 898.2 without implementation:
	CODE COMMIT RELATED NOTES

	927. VIRGO code commits as on 16/05/2013
	928. VIRGO code commits as on 20/05/2013
	929. VIRGO code commits as on 6/6/2013
	930. VIRGO code commits as on 25/6/2013
	931. VIRGO code commits as on 1/7/2013
	932. commit as on 03/07/2013
	933. commit as on 10/07/2013
	934. commits as on 12/07/2013
	935. commits as on 16/07/2013
	936. commits as on 17/07/2013
	937. commits as on 23/07/2013
	938. commits as on 24/07/2013
	939. commits as on 29/07/2013
	940. commits as on 30/07/2013
	941. commits as on 01/08/2013 and 02/08/2013
	942. commits as on 05/08/2013:
	943. 11 August 2013:
	944. commits as on 23 August 2013
	945. commits as on 1 September 2013
	946. commits as on 14 September 2013
	949. Commits as on 17 September 2013
	950. Commits as on 19 September 2013
	951. Commits as on 23 September 2013
	952. Commits as on 24 September 2013
	953. Commits as on 25 September 2013
	954. Commits as on 26 September 2013
	955. Commits as on 27 September 2013
	956. Commits as on 30 September 2013
	957. Commits as on 1 October 2013
	958. Commits as on 7 October 2013
	959. Commits as on 9 October 2013 and 10 October 2013
	960. Commits as on 11 October 2013
	961. Commits as on 14 October 2013 and 15 October 2013
	962. Commits as on 18 October 2013
	963. Commits as on 21 October 2013
	964. Commits as on 24 October 2013
	965. Commits as on 25 October 2013
	966. Commits as on 29 October 2013
	967. Commits as on 2 November 2013
	968. Commits as on 6 November 2013
	969. Commits as on 7 November 2013
	970. Commits as on 11 November 2013
	971. Commits as on 22 November 2013
	972. Commits as on 2 December 2013
	973. Commits as on 5 December 2013
	974. Commits as on 12 March 2014
	975. Commits as on 20 March 2014
	976. Commits as on 30 March 2014
	977. Commits as on 6 April 2014
	978. Commits as on 7 April 2014
	979. Commits as on 25 April 2014
	980. Commits as on 5 May 2014
	981. Commits as on 7 May 2014
	982. Commits as on 8 May 2014
	983. Commits as on 6 June 2014
	984. Commits as on 3 July 2014
	985. 7 July 2014 - virgo_write() kernel panic notes:
	986. Commits as on 29 July 2014
	987. (FEATURE - DONE) VIRGO Kernel Modules and System Calls major rewrite for 3.15.5 kernel - 17 August 2014
	Initial code commits for VIRGO EventNet kernel module service:
	VIRGO Linux Kernel 4.1.5 port - related code changes - some important notes:
	VIRGO Linux Kernel 4.1.5 - memory system calls:
	VIRGO Linux Kernel 4.1.5 - filesystem calls- testcases and logs:
	VIRGO Linux Kernel 4.1.5 filesystem syscalls:
	VIRGO Linux 4.1.5 kernel memory syscalls:
	VIRGO Linux Kernel 4.1.5 - Memory System Calls:
	1016. (FEATURE - DONE) Python-C++-VIRGOKernel and Python-C-VIRGOKernel boost::python and cpython implementations:
	1017. Commits for Telnet/System Call Interface to VIRGO CPUPooling -> VIRGO Queue -> KingCobra
	1022. (FEATURE-DONE) Socket Buffer Debug Utility Function - uses linux skbuff facility

